Properties

Label 12.8.181928116000000.1
Degree $12$
Signature $[8, 2]$
Discriminant $2^{8}\cdot 5^{6}\cdot 19^{4}\cdot 349$
Root discriminant $15.43$
Ramified primes $2, 5, 19, 349$
Class number $1$
Class group Trivial
Galois group 12T208

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, 10, -10, -33, 50, 41, -30, -7, 8, -4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 4*x^10 + 8*x^9 - 7*x^8 - 30*x^7 + 41*x^6 + 50*x^5 - 33*x^4 - 10*x^3 + 10*x^2 - 7*x + 1)
 
gp: K = bnfinit(x^12 - x^11 - 4*x^10 + 8*x^9 - 7*x^8 - 30*x^7 + 41*x^6 + 50*x^5 - 33*x^4 - 10*x^3 + 10*x^2 - 7*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - x^{11} - 4 x^{10} + 8 x^{9} - 7 x^{8} - 30 x^{7} + 41 x^{6} + 50 x^{5} - 33 x^{4} - 10 x^{3} + 10 x^{2} - 7 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(181928116000000=2^{8}\cdot 5^{6}\cdot 19^{4}\cdot 349\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 349$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{331} a^{11} + \frac{65}{331} a^{10} - \frac{17}{331} a^{9} - \frac{121}{331} a^{8} - \frac{49}{331} a^{7} + \frac{46}{331} a^{6} + \frac{98}{331} a^{5} - \frac{102}{331} a^{4} - \frac{145}{331} a^{3} + \frac{19}{331} a^{2} - \frac{60}{331} a + \frac{5}{331}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 493.218202324 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

12T208:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1152
The 44 conjugacy class representatives for [2A_4^2]2=2A4wr2=2wrF_18(6)
Character table for [2A_4^2]2=2A4wr2=2wrF_18(6) is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.722000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.12.0.1}{12} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.8.2$x^{12} - 8 x^{3} + 16$$3$$4$$8$$C_3\times (C_3 : C_4)$$[\ ]_{3}^{12}$
$5$5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$19$19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
349Data not computed