Properties

Label 12.8.139794441744120601.1
Degree $12$
Signature $[8, 2]$
Discriminant $19^{10}\cdot 151^{2}$
Root discriminant $26.84$
Ramified primes $19, 151$
Class number $1$
Class group Trivial
Galois group 12T166

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 40, 5, -125, 86, 19, -44, 54, -48, 18, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 2*x^10 + 18*x^9 - 48*x^8 + 54*x^7 - 44*x^6 + 19*x^5 + 86*x^4 - 125*x^3 + 5*x^2 + 40*x - 11)
 
gp: K = bnfinit(x^12 - 4*x^11 + 2*x^10 + 18*x^9 - 48*x^8 + 54*x^7 - 44*x^6 + 19*x^5 + 86*x^4 - 125*x^3 + 5*x^2 + 40*x - 11, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 2 x^{10} + 18 x^{9} - 48 x^{8} + 54 x^{7} - 44 x^{6} + 19 x^{5} + 86 x^{4} - 125 x^{3} + 5 x^{2} + 40 x - 11 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(139794441744120601=19^{10}\cdot 151^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 151$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{369353} a^{11} + \frac{3963}{369353} a^{10} - \frac{160956}{369353} a^{9} + \frac{98903}{369353} a^{8} + \frac{95267}{369353} a^{7} + \frac{76124}{369353} a^{6} - \frac{146890}{369353} a^{5} + \frac{126423}{369353} a^{4} - \frac{61247}{369353} a^{3} + \frac{67300}{369353} a^{2} - \frac{63114}{369353} a + \frac{48136}{369353}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28311.3935094 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

12T166:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 576
The 16 conjugacy class representatives for [1/9.A(4)^3]3_3
Character table for [1/9.A(4)^3]3_3

Intermediate fields

3.3.361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ R ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.3.2.2$x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$
19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$
$151$151.2.1.2$x^{2} + 755$$2$$1$$1$$C_2$$[\ ]_{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.1.2$x^{2} + 755$$2$$1$$1$$C_2$$[\ ]_{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$