Normalized defining polynomial
\( x^{12} - 2 x^{11} - 4 x^{10} + 38 x^{9} - 16 x^{8} - 216 x^{7} + 126 x^{6} + 540 x^{5} - 289 x^{4} - 676 x^{3} + 332 x^{2} + 418 x - 251 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5904266017370112=-\,2^{12}\cdot 3^{6}\cdot 7^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{58} a^{9} + \frac{13}{58} a^{8} + \frac{1}{58} a^{7} - \frac{3}{29} a^{6} + \frac{17}{58} a^{5} + \frac{23}{58} a^{4} - \frac{14}{29} a^{3} + \frac{23}{58} a^{2} - \frac{13}{58} a + \frac{6}{29}$, $\frac{1}{58} a^{10} + \frac{3}{29} a^{8} + \frac{5}{29} a^{7} + \frac{4}{29} a^{6} - \frac{12}{29} a^{5} + \frac{21}{58} a^{4} + \frac{5}{29} a^{3} + \frac{7}{58} a^{2} - \frac{11}{29} a - \frac{11}{58}$, $\frac{1}{8062} a^{11} - \frac{13}{8062} a^{10} - \frac{537}{4031} a^{8} + \frac{539}{8062} a^{7} - \frac{585}{8062} a^{6} - \frac{4003}{8062} a^{5} - \frac{3243}{8062} a^{4} + \frac{1429}{4031} a^{3} - \frac{1184}{4031} a^{2} + \frac{1931}{4031} a - \frac{182}{4031}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1467.41211547 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_4$ (as 12T14):
| A solvable group of order 24 |
| The 15 conjugacy class representatives for $D_4 \times C_3$ |
| Character table for $D_4 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), 4.2.49392.1, \(\Q(\zeta_{28})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.11.4 | $x^{12} - 7$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $[\ ]_{12}^{2}$ |