Normalized defining polynomial
\( x^{12} - 17x^{10} + 119x^{8} - 255x^{6} - 170x^{4} + 612x^{2} - 34 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{31/12}17^{11/12}\approx 80.45857442045158$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}$, $\frac{1}{4}a^{8}+\frac{1}{4}a^{6}-\frac{1}{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{884192}a^{10}-\frac{6379}{55262}a^{8}+\frac{427559}{884192}a^{6}+\frac{28113}{110524}a^{4}+\frac{96543}{442096}a^{2}+\frac{186145}{442096}$, $\frac{1}{1768384}a^{11}-\frac{1}{1768384}a^{10}-\frac{6379}{110524}a^{9}+\frac{6379}{110524}a^{8}+\frac{427559}{1768384}a^{7}-\frac{427559}{1768384}a^{6}-\frac{82411}{221048}a^{5}+\frac{82411}{221048}a^{4}+\frac{96543}{884192}a^{3}-\frac{96543}{884192}a^{2}-\frac{255951}{884192}a+\frac{255951}{884192}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{9505}{884192}a^{11}+\frac{1889}{884192}a^{10}-\frac{9981}{55262}a^{9}-\frac{2815}{55262}a^{8}+\frac{1086055}{884192}a^{7}+\frac{391655}{884192}a^{6}-\frac{254015}{110524}a^{5}-\frac{167111}{110524}a^{4}-\frac{1476369}{442096}a^{3}-\frac{215921}{442096}a^{2}+\frac{2692609}{442096}a+\frac{603681}{442096}$, $\frac{4589}{884192}a^{11}+\frac{1695}{884192}a^{10}-\frac{20377}{221048}a^{9}-\frac{7105}{221048}a^{8}+\frac{598823}{884192}a^{7}+\frac{227685}{884192}a^{6}-\frac{191999}{110524}a^{5}-\frac{94833}{110524}a^{4}+\frac{55635}{442096}a^{3}+\frac{506961}{442096}a^{2}+\frac{1305697}{442096}a+\frac{190803}{442096}$, $\frac{7609}{221048}a^{10}-\frac{59307}{110524}a^{8}+\frac{740897}{221048}a^{6}-\frac{117909}{27631}a^{4}-\frac{1162581}{110524}a^{2}+\frac{509603}{110524}$, $\frac{9505}{884192}a^{11}-\frac{1889}{884192}a^{10}-\frac{9981}{55262}a^{9}+\frac{2815}{55262}a^{8}+\frac{1086055}{884192}a^{7}-\frac{391655}{884192}a^{6}-\frac{254015}{110524}a^{5}+\frac{167111}{110524}a^{4}-\frac{1476369}{442096}a^{3}+\frac{215921}{442096}a^{2}+\frac{2692609}{442096}a-\frac{603681}{442096}$, $\frac{476}{27631}a^{10}-\frac{7166}{27631}a^{8}+\frac{43400}{27631}a^{6}-\frac{43452}{27631}a^{4}-\frac{157556}{27631}a^{2}+\frac{233485}{27631}$, $\frac{7489}{442096}a^{11}+\frac{4933}{221048}a^{10}-\frac{69549}{221048}a^{9}-\frac{72523}{221048}a^{8}+\frac{1048525}{442096}a^{7}+\frac{54190}{27631}a^{6}-\frac{341535}{55262}a^{5}-\frac{53822}{27631}a^{4}-\frac{700625}{221048}a^{3}-\frac{443393}{110524}a^{2}+\frac{3371675}{221048}a+\frac{122405}{27631}$, $\frac{7489}{442096}a^{11}-\frac{4933}{221048}a^{10}-\frac{69549}{221048}a^{9}+\frac{72523}{221048}a^{8}+\frac{1048525}{442096}a^{7}-\frac{54190}{27631}a^{6}-\frac{341535}{55262}a^{5}+\frac{53822}{27631}a^{4}-\frac{700625}{221048}a^{3}+\frac{443393}{110524}a^{2}+\frac{3371675}{221048}a-\frac{122405}{27631}$, $\frac{28315}{442096}a^{11}+\frac{6713}{221048}a^{10}-\frac{228983}{221048}a^{9}-\frac{100249}{221048}a^{8}+\frac{3015631}{442096}a^{7}+\frac{293031}{110524}a^{6}-\frac{637397}{55262}a^{5}-\frac{52423}{27631}a^{4}-\frac{3401291}{221048}a^{3}-\frac{1235341}{110524}a^{2}+\frac{4724433}{221048}a-\frac{176081}{55262}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 737857.290597 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 737857.290597 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 5.52672583652 \end{aligned}\] (assuming GRH)
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.2246042996417036288.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.6.11.11 | $x^{6} + 4 x^{4} + 4 x + 14$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |