Normalized defining polynomial
\( x^{12} - 17x^{10} + 85x^{8} - 119x^{6} - 102x^{4} + 340x^{2} - 136 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{17/6}17^{11/12}\approx 95.68190916377696$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{19336}a^{10}-\frac{1541}{19336}a^{8}+\frac{4079}{19336}a^{6}+\frac{9}{19336}a^{4}-\frac{1}{2}a^{3}-\frac{1123}{2417}a^{2}+\frac{517}{4834}$, $\frac{1}{19336}a^{11}-\frac{1541}{19336}a^{9}-\frac{755}{19336}a^{7}+\frac{9}{19336}a^{5}-\frac{2075}{9668}a^{3}-\frac{950}{2417}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{447}{9668}a^{11}+\frac{533}{19336}a^{10}-\frac{7233}{9668}a^{9}-\frac{9241}{19336}a^{8}+\frac{8079}{2417}a^{7}+\frac{47147}{19336}a^{6}-\frac{29815}{9668}a^{5}-\frac{62879}{19336}a^{4}-\frac{64053}{9668}a^{3}-\frac{8811}{2417}a^{2}+\frac{58559}{4834}a+\frac{38695}{4834}$, $\frac{853}{19336}a^{11}-\frac{69}{2417}a^{10}-\frac{14127}{19336}a^{9}+\frac{2379}{4834}a^{8}+\frac{66583}{19336}a^{7}-\frac{5913}{2417}a^{6}-\frac{74501}{19336}a^{5}+\frac{6630}{2417}a^{4}-\frac{15289}{2417}a^{3}+\frac{24041}{4834}a^{2}+\frac{59115}{4834}a-\frac{21842}{2417}$, $\frac{447}{9668}a^{11}-\frac{533}{19336}a^{10}-\frac{7233}{9668}a^{9}+\frac{9241}{19336}a^{8}+\frac{8079}{2417}a^{7}-\frac{47147}{19336}a^{6}-\frac{29815}{9668}a^{5}+\frac{62879}{19336}a^{4}-\frac{64053}{9668}a^{3}+\frac{8811}{2417}a^{2}+\frac{58559}{4834}a-\frac{38695}{4834}$, $\frac{177}{19336}a^{11}+\frac{149}{19336}a^{10}-\frac{2053}{19336}a^{9}-\frac{2411}{19336}a^{8}+\frac{1717}{19336}a^{7}+\frac{8355}{19336}a^{6}+\frac{20929}{19336}a^{5}+\frac{15843}{19336}a^{4}-\frac{9559}{9668}a^{3}-\frac{5388}{2417}a^{2}-\frac{3794}{2417}a-\frac{311}{4834}$, $\frac{177}{19336}a^{11}-\frac{149}{19336}a^{10}-\frac{2053}{19336}a^{9}+\frac{2411}{19336}a^{8}+\frac{1717}{19336}a^{7}-\frac{8355}{19336}a^{6}+\frac{20929}{19336}a^{5}-\frac{15843}{19336}a^{4}-\frac{9559}{9668}a^{3}+\frac{5388}{2417}a^{2}-\frac{3794}{2417}a+\frac{311}{4834}$, $\frac{287}{9668}a^{11}+\frac{479}{19336}a^{10}-\frac{2395}{4834}a^{9}-\frac{8205}{19336}a^{8}+\frac{11299}{4834}a^{7}+\frac{39577}{19336}a^{6}-\frac{6001}{2417}a^{5}-\frac{39195}{19336}a^{4}-\frac{38141}{9668}a^{3}-\frac{8594}{2417}a^{2}+\frac{42973}{4834}a+\frac{34947}{4834}$, $\frac{287}{9668}a^{11}-\frac{479}{19336}a^{10}-\frac{2395}{4834}a^{9}+\frac{8205}{19336}a^{8}+\frac{11299}{4834}a^{7}-\frac{39577}{19336}a^{6}-\frac{6001}{2417}a^{5}+\frac{39195}{19336}a^{4}-\frac{38141}{9668}a^{3}+\frac{8594}{2417}a^{2}+\frac{42973}{4834}a-\frac{34947}{4834}$, $\frac{19}{9668}a^{10}-\frac{275}{9668}a^{8}+\frac{157}{9668}a^{6}+\frac{9839}{9668}a^{4}-\frac{6419}{2417}a^{2}+\frac{2572}{2417}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 426965.637378 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 426965.637378 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 3.19807373252 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.8.2246042996417036288.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.4.10.6 | $x^{4} + 4 x^{3} + 12 x^{2} + 10$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |