Normalized defining polynomial
\( x^{12} - 17x^{10} + 68x^{8} - 34x^{6} + 374x^{4} - 136 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{25/12}17^{11/12}\approx 56.89280357730381$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}$, $\frac{1}{3535904}a^{10}-\frac{1}{4}a^{9}+\frac{314557}{3535904}a^{8}-\frac{1}{4}a^{7}+\frac{474149}{1767952}a^{6}-\frac{90923}{1767952}a^{4}-\frac{1}{2}a^{3}-\frac{84159}{1767952}a^{2}-\frac{1}{2}a+\frac{423967}{883976}$, $\frac{1}{7071808}a^{11}-\frac{1453395}{7071808}a^{9}-\frac{1}{4}a^{8}+\frac{474149}{3535904}a^{7}-\frac{1}{4}a^{6}+\frac{1677029}{3535904}a^{5}+\frac{1683793}{3535904}a^{3}-\frac{1}{2}a^{2}+\frac{423967}{1767952}a-\frac{1}{2}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{84437}{7071808}a^{11}-\frac{10535}{3535904}a^{10}-\frac{1461439}{7071808}a^{9}+\frac{168029}{3535904}a^{8}+\frac{3098001}{3535904}a^{7}-\frac{253327}{1767952}a^{6}-\frac{2585719}{3535904}a^{5}-\frac{356179}{1767952}a^{4}+\frac{18713077}{3535904}a^{3}-\frac{1780815}{1767952}a^{2}-\frac{5178349}{1767952}a+\frac{680371}{883976}$, $\frac{84437}{7071808}a^{11}+\frac{10535}{3535904}a^{10}-\frac{1461439}{7071808}a^{9}-\frac{168029}{3535904}a^{8}+\frac{3098001}{3535904}a^{7}+\frac{253327}{1767952}a^{6}-\frac{2585719}{3535904}a^{5}+\frac{356179}{1767952}a^{4}+\frac{18713077}{3535904}a^{3}+\frac{1780815}{1767952}a^{2}-\frac{5178349}{1767952}a-\frac{680371}{883976}$, $\frac{6277}{883976}a^{11}-\frac{22239}{3535904}a^{10}-\frac{107101}{883976}a^{9}+\frac{352941}{3535904}a^{8}+\frac{54393}{110497}a^{7}-\frac{533883}{1767952}a^{6}-\frac{117163}{441988}a^{5}-\frac{500491}{1767952}a^{4}+\frac{1014587}{441988}a^{3}-\frac{4185071}{1767952}a^{2}+\frac{181301}{110497}a-\frac{998073}{883976}$, $\frac{6277}{883976}a^{11}+\frac{22239}{3535904}a^{10}-\frac{107101}{883976}a^{9}-\frac{352941}{3535904}a^{8}+\frac{54393}{110497}a^{7}+\frac{533883}{1767952}a^{6}-\frac{117163}{441988}a^{5}+\frac{500491}{1767952}a^{4}+\frac{1014587}{441988}a^{3}+\frac{4185071}{1767952}a^{2}+\frac{181301}{110497}a+\frac{998073}{883976}$, $\frac{166137}{7071808}a^{11}+\frac{4683}{1767952}a^{10}-\frac{2872763}{7071808}a^{9}-\frac{75573}{1767952}a^{8}+\frac{6126957}{3535904}a^{7}+\frac{113049}{883976}a^{6}-\frac{5596419}{3535904}a^{5}+\frac{284023}{883976}a^{4}+\frac{36167625}{3535904}a^{3}-\frac{305289}{883976}a^{2}-\frac{3906057}{1767952}a+\frac{690347}{441988}$, $\frac{3523}{150464}a^{11}+\frac{66849}{3535904}a^{10}-\frac{58281}{150464}a^{9}-\frac{1084171}{3535904}a^{8}+\frac{107255}{75232}a^{7}+\frac{1869009}{1767952}a^{6}-\frac{21489}{75232}a^{5}+\frac{107349}{1767952}a^{4}+\frac{674243}{75232}a^{3}+\frac{12937913}{1767952}a^{2}+\frac{148885}{37616}a+\frac{3709363}{883976}$, $\frac{16551}{7071808}a^{11}+\frac{645}{1767952}a^{10}-\frac{385733}{7071808}a^{9}+\frac{16773}{1767952}a^{8}+\frac{1469123}{3535904}a^{7}-\frac{250585}{883976}a^{6}-\frac{3875325}{3535904}a^{5}+\frac{1465033}{883976}a^{4}+\frac{1998519}{3535904}a^{3}-\frac{1685983}{883976}a^{2}-\frac{1691623}{1767952}a+\frac{531125}{441988}$, $\frac{16551}{7071808}a^{11}-\frac{645}{1767952}a^{10}-\frac{385733}{7071808}a^{9}-\frac{16773}{1767952}a^{8}+\frac{1469123}{3535904}a^{7}+\frac{250585}{883976}a^{6}-\frac{3875325}{3535904}a^{5}-\frac{1465033}{883976}a^{4}+\frac{1998519}{3535904}a^{3}+\frac{1685983}{883976}a^{2}-\frac{1691623}{1767952}a-\frac{531125}{441988}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 289137.665015 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 289137.665015 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.16570958085 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.140377687276064768.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.11.10 | $x^{6} + 4 x^{2} + 2$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |