Normalized defining polynomial
\( x^{12} - 34x^{8} + 34x^{6} + 136x^{4} + 136x^{2} - 544 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{31/12}17^{11/12}\approx 80.45857442045158$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{4}a^{6}-\frac{3}{8}a^{5}-\frac{1}{4}a^{4}+\frac{3}{8}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{68864}a^{10}+\frac{3543}{34432}a^{8}-\frac{1}{4}a^{7}+\frac{4753}{34432}a^{6}+\frac{5279}{34432}a^{4}-\frac{1}{2}a^{3}+\frac{6955}{17216}a^{2}-\frac{1}{2}a-\frac{1561}{4304}$, $\frac{1}{137728}a^{11}-\frac{761}{68864}a^{9}-\frac{3855}{68864}a^{7}-\frac{1}{4}a^{6}+\frac{31103}{68864}a^{5}-\frac{5957}{34432}a^{3}-\frac{1}{2}a^{2}+\frac{591}{8608}a-\frac{1}{2}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{141}{17216}a^{10}+\frac{299}{8608}a^{8}-\frac{1251}{8608}a^{6}-\frac{4557}{8608}a^{4}-\frac{4961}{4304}a^{2}+\frac{479}{1076}$, $\frac{29}{68864}a^{11}-\frac{509}{34432}a^{10}-\frac{549}{34432}a^{9}-\frac{11}{17216}a^{8}+\frac{109}{34432}a^{7}+\frac{8179}{17216}a^{6}+\frac{15363}{34432}a^{5}-\frac{9923}{17216}a^{4}-\frac{22113}{17216}a^{3}-\frac{15119}{8608}a^{2}+\frac{6379}{4304}a+\frac{4765}{2152}$, $\frac{163}{137728}a^{11}+\frac{43}{34432}a^{10}+\frac{773}{68864}a^{9}-\frac{443}{17216}a^{8}+\frac{19}{68864}a^{7}-\frac{2213}{17216}a^{6}-\frac{17539}{68864}a^{5}+\frac{7493}{17216}a^{4}-\frac{11199}{34432}a^{3}-\frac{63}{8608}a^{2}+\frac{12405}{8608}a-\frac{411}{2152}$, $\frac{163}{137728}a^{11}-\frac{43}{34432}a^{10}+\frac{773}{68864}a^{9}+\frac{443}{17216}a^{8}+\frac{19}{68864}a^{7}+\frac{2213}{17216}a^{6}-\frac{17539}{68864}a^{5}-\frac{7493}{17216}a^{4}-\frac{11199}{34432}a^{3}+\frac{63}{8608}a^{2}+\frac{12405}{8608}a+\frac{411}{2152}$, $\frac{1315}{137728}a^{11}-\frac{271}{68864}a^{10}+\frac{2117}{68864}a^{9}-\frac{361}{34432}a^{8}-\frac{16429}{68864}a^{7}+\frac{3137}{34432}a^{6}-\frac{30595}{68864}a^{5}+\frac{6927}{34432}a^{4}+\frac{12737}{34432}a^{3}+\frac{4651}{17216}a^{2}+\frac{17509}{8608}a-\frac{3065}{4304}$, $\frac{1315}{137728}a^{11}+\frac{271}{68864}a^{10}+\frac{2117}{68864}a^{9}+\frac{361}{34432}a^{8}-\frac{16429}{68864}a^{7}-\frac{3137}{34432}a^{6}-\frac{30595}{68864}a^{5}-\frac{6927}{34432}a^{4}+\frac{12737}{34432}a^{3}-\frac{4651}{17216}a^{2}+\frac{17509}{8608}a+\frac{3065}{4304}$, $\frac{9}{1076}a^{11}+\frac{401}{68864}a^{10}+\frac{21}{1076}a^{9}+\frac{423}{34432}a^{8}-\frac{257}{1076}a^{7}-\frac{5023}{34432}a^{6}-\frac{51}{269}a^{5}-\frac{689}{34432}a^{4}+\frac{187}{269}a^{3}+\frac{8571}{17216}a^{2}+\frac{1395}{538}a+\frac{6727}{4304}$, $\frac{9}{1076}a^{11}-\frac{401}{68864}a^{10}+\frac{21}{1076}a^{9}-\frac{423}{34432}a^{8}-\frac{257}{1076}a^{7}+\frac{5023}{34432}a^{6}-\frac{51}{269}a^{5}+\frac{689}{34432}a^{4}+\frac{187}{269}a^{3}-\frac{8571}{17216}a^{2}+\frac{1395}{538}a-\frac{6727}{4304}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 289099.334914 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 289099.334914 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.16542247932 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.2246042996417036288.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{8}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.11.12 | $x^{6} + 4 x^{4} + 4 x^{3} + 4 x + 10$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |