Normalized defining polynomial
\( x^{12} + 6 x^{10} - 4 x^{9} - 54 x^{8} - 24 x^{7} - 200 x^{6} + 72 x^{5} + 750 x^{4} + 508 x^{3} + 180 x^{2} + 120 x + 20 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-415030544459366400=-\,2^{20}\cdot 3^{12}\cdot 5^{2}\cdot 31^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{1912106914550} a^{11} - \frac{87330187159}{1912106914550} a^{10} - \frac{175179588763}{1912106914550} a^{9} - \frac{29219640806}{956053457275} a^{8} + \frac{210767067577}{956053457275} a^{7} + \frac{28204412729}{191210691455} a^{6} + \frac{6299292822}{27315813065} a^{5} - \frac{284591575694}{956053457275} a^{4} + \frac{357675496646}{956053457275} a^{3} + \frac{1724136384}{27315813065} a^{2} - \frac{47337305389}{191210691455} a + \frac{82026161188}{191210691455}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102237.058294 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3888 |
| The 39 conjugacy class representatives for [3^4:2]S(4) |
| Character table for [3^4:2]S(4) is not computed |
Intermediate fields
| 4.2.1984.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.8.14.1 | $x^{8} + 2 x^{7} + 6$ | $8$ | $1$ | $14$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.12.12.16 | $x^{12} + 24 x^{11} + 42 x^{10} - 39 x^{9} - 99 x^{8} + 18 x^{7} - 27 x^{6} - 54 x^{4} + 27 x^{3} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T170 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 31 | Data not computed | ||||||