Normalized defining polynomial
\( x^{12} - 5 x^{11} - 2 x^{10} + 50 x^{9} - 83 x^{8} - 75 x^{7} + 380 x^{6} - 330 x^{5} - 100 x^{4} + \cdots - 16 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-280755374552129536\) \(\medspace = -\,2^{13}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(28.45\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{11/6}17^{11/12}\approx 47.84095458188848$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{1831448}a^{11}+\frac{190315}{1831448}a^{10}+\frac{101851}{915724}a^{9}+\frac{3891}{457862}a^{8}-\frac{226743}{1831448}a^{7}-\frac{234335}{1831448}a^{6}-\frac{16356}{228931}a^{5}-\frac{83843}{457862}a^{4}+\frac{88854}{228931}a^{3}+\frac{36433}{457862}a^{2}+\frac{33186}{228931}a-\frac{17829}{228931}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{59533}{1831448}a^{11}-\frac{230157}{1831448}a^{10}-\frac{99907}{457862}a^{9}+\frac{325762}{228931}a^{8}-\frac{1834983}{1831448}a^{7}-\frac{7851931}{1831448}a^{6}+\frac{7699765}{915724}a^{5}+\frac{207568}{228931}a^{4}-\frac{1994883}{228931}a^{3}+\frac{2362805}{457862}a^{2}+\frac{216539}{228931}a-\frac{89741}{228931}$, $\frac{58959}{1831448}a^{11}-\frac{41949}{1831448}a^{10}-\frac{256907}{457862}a^{9}+\frac{124769}{228931}a^{8}+\frac{5608483}{1831448}a^{7}-\frac{9328655}{1831448}a^{6}-\frac{5111679}{915724}a^{5}+\frac{4124581}{228931}a^{4}+\frac{801706}{228931}a^{3}-\frac{4356015}{457862}a^{2}+\frac{626910}{228931}a-\frac{386721}{228931}$, $\frac{135025}{1831448}a^{11}-\frac{679737}{1831448}a^{10}-\frac{35172}{228931}a^{9}+\frac{3405225}{915724}a^{8}-\frac{10646047}{1831448}a^{7}-\frac{11976415}{1831448}a^{6}+\frac{25067307}{915724}a^{5}-\frac{16780351}{915724}a^{4}-\frac{3280601}{228931}a^{3}+\frac{9711599}{457862}a^{2}-\frac{1758261}{228931}a+\frac{535533}{228931}$, $\frac{316235}{1831448}a^{11}-\frac{1238013}{1831448}a^{10}-\frac{526961}{457862}a^{9}+\frac{7029381}{915724}a^{8}-\frac{10209197}{1831448}a^{7}-\frac{40713743}{1831448}a^{6}+\frac{40572341}{915724}a^{5}-\frac{207887}{915724}a^{4}-\frac{8487766}{228931}a^{3}+\frac{11196937}{457862}a^{2}+\frac{148739}{228931}a+\frac{416715}{228931}$, $\frac{171201}{1831448}a^{11}-\frac{715191}{1831448}a^{10}-\frac{113072}{228931}a^{9}+\frac{3799589}{915724}a^{8}-\frac{7498051}{1831448}a^{7}-\frac{18374513}{1831448}a^{6}+\frac{23145913}{915724}a^{5}-\frac{7160347}{915724}a^{4}-\frac{6865867}{457862}a^{3}+\frac{4191227}{228931}a^{2}-\frac{1735689}{228931}a+\frac{223325}{228931}$, $\frac{14973}{1831448}a^{11}-\frac{146593}{1831448}a^{10}+\frac{26408}{228931}a^{9}+\frac{170200}{228931}a^{8}-\frac{4096967}{1831448}a^{7}-\frac{559311}{1831448}a^{6}+\frac{7785851}{915724}a^{5}-\frac{2136662}{228931}a^{4}-\frac{1280685}{228931}a^{3}+\frac{4318425}{457862}a^{2}-\frac{573085}{228931}a-\frac{20071}{228931}$, $\frac{143235}{1831448}a^{11}-\frac{876593}{1831448}a^{10}+\frac{228941}{915724}a^{9}+\frac{1940779}{457862}a^{8}-\frac{19696425}{1831448}a^{7}-\frac{484091}{1831448}a^{6}+\frac{8827572}{228931}a^{5}-\frac{12700524}{228931}a^{4}+\frac{1873055}{228931}a^{3}+\frac{20373469}{457862}a^{2}-\frac{9283814}{228931}a+\frac{2506731}{228931}$, $\frac{223309}{457862}a^{11}-\frac{1915251}{915724}a^{10}-\frac{2259943}{915724}a^{9}+\frac{20734389}{915724}a^{8}-\frac{11156281}{457862}a^{7}-\frac{49353235}{915724}a^{6}+\frac{134526803}{915724}a^{5}-\frac{51996001}{915724}a^{4}-\frac{40140893}{457862}a^{3}+\frac{25087317}{228931}a^{2}-\frac{9357879}{228931}a+\frac{2827543}{228931}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 69919.1497116 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 69919.1497116 \cdot 2}{2\cdot\sqrt{280755374552129536}}\cr\approx \mathstrut & 2.09484395480 \end{aligned}\] (assuming GRH)
Galois group
$S_3^2:C_4$ (as 12T80):
A solvable group of order 144 |
The 18 conjugacy class representatives for $S_3^2:C_4$ |
Character table for $S_3^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.2.39304.1, 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.8.35094421819016192.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |