Normalized defining polynomial
\( x^{12} - 6 x^{11} - 9 x^{10} + 66 x^{9} + 100 x^{8} - 250 x^{7} - 520 x^{6} + 218 x^{5} + 733 x^{4} + \cdots - 358 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-17968343971336290304\) \(\medspace = -\,2^{19}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(40.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{55/24}17^{11/12}\approx 65.73125404566245$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{324410234}a^{11}-\frac{20025653}{324410234}a^{10}-\frac{27656649}{324410234}a^{9}+\frac{55105617}{324410234}a^{8}-\frac{103016275}{324410234}a^{7}+\frac{58247787}{324410234}a^{6}+\frac{140786925}{324410234}a^{5}-\frac{161333563}{324410234}a^{4}+\frac{24806}{162205117}a^{3}+\frac{78073579}{162205117}a^{2}+\frac{21913611}{162205117}a+\frac{26893023}{162205117}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{457051057}{162205117}a^{11}-\frac{3086575082}{162205117}a^{10}-\frac{3588441469}{324410234}a^{9}+\frac{63121345129}{324410234}a^{8}+\frac{43832034375}{324410234}a^{7}-\frac{262325592095}{324410234}a^{6}-\frac{277563407747}{324410234}a^{5}+\frac{411620307913}{324410234}a^{4}+\frac{360411803063}{324410234}a^{3}-\frac{844248903895}{324410234}a^{2}-\frac{602392185735}{162205117}a-\frac{213866668928}{162205117}$, $\frac{3376875571}{324410234}a^{11}-\frac{22865214181}{324410234}a^{10}-\frac{6380962766}{162205117}a^{9}+\frac{116363938964}{162205117}a^{8}+\frac{79111588295}{162205117}a^{7}-\frac{483165881471}{162205117}a^{6}-\frac{505411608066}{162205117}a^{5}+\frac{757966332626}{162205117}a^{4}+\frac{1306557952437}{324410234}a^{3}-\frac{3101203198585}{324410234}a^{2}-\frac{2206526227316}{162205117}a-\frac{783852831822}{162205117}$, $\frac{692114253}{324410234}a^{11}-\frac{2334524999}{162205117}a^{10}-\frac{2744391247}{324410234}a^{9}+\frac{47719595873}{324410234}a^{8}+\frac{33599475571}{324410234}a^{7}-\frac{197992012205}{324410234}a^{6}-\frac{212177783313}{324410234}a^{5}+\frac{308744692533}{324410234}a^{4}+\frac{138508720971}{162205117}a^{3}-\frac{635120763815}{324410234}a^{2}-\frac{460467991998}{162205117}a-\frac{166372873488}{162205117}$, $\frac{2924879}{324410234}a^{11}-\frac{19762053}{324410234}a^{10}-\frac{11202103}{324410234}a^{9}+\frac{200976889}{324410234}a^{8}+\frac{139472071}{324410234}a^{7}-\frac{847135603}{324410234}a^{6}-\frac{868377549}{324410234}a^{5}+\frac{1434219247}{324410234}a^{4}+\frac{535476526}{162205117}a^{3}-\frac{1295989052}{162205117}a^{2}-\frac{1664585183}{162205117}a-\frac{586808529}{162205117}$, $\frac{528664239}{324410234}a^{11}-\frac{1805761818}{162205117}a^{10}-\frac{874962406}{162205117}a^{9}+\frac{18154631788}{162205117}a^{8}+\frac{11332581173}{162205117}a^{7}-\frac{75311748533}{162205117}a^{6}-\frac{74781489752}{162205117}a^{5}+\frac{119009164598}{162205117}a^{4}+\frac{188491767673}{324410234}a^{3}-\frac{240690018737}{162205117}a^{2}-\frac{331884734873}{162205117}a-\frac{116321202283}{162205117}$, $\frac{151537332}{162205117}a^{11}-\frac{2046594799}{324410234}a^{10}-\frac{1188173957}{324410234}a^{9}+\frac{20903063333}{324410234}a^{8}+\frac{14579514465}{324410234}a^{7}-\frac{86765444687}{324410234}a^{6}-\frac{92406198277}{324410234}a^{5}+\frac{135534509795}{324410234}a^{4}+\frac{120568696633}{324410234}a^{3}-\frac{138957324009}{162205117}a^{2}-\frac{200486547550}{162205117}a-\frac{71938923821}{162205117}$, $\frac{2000418555}{324410234}a^{11}-\frac{6764897726}{162205117}a^{10}-\frac{7672101975}{324410234}a^{9}+\frac{137874498399}{324410234}a^{8}+\frac{94760536077}{324410234}a^{7}-\frac{572346018769}{324410234}a^{6}-\frac{603117169811}{324410234}a^{5}+\frac{896246533439}{324410234}a^{4}+\frac{390858794192}{162205117}a^{3}-\frac{1836458045061}{324410234}a^{2}-\frac{1314152803460}{162205117}a-\frac{469437126542}{162205117}$, $\frac{4617620241}{324410234}a^{11}-\frac{31284747049}{324410234}a^{10}-\frac{17357974141}{324410234}a^{9}+\frac{318598051417}{324410234}a^{8}+\frac{214541565589}{324410234}a^{7}-\frac{1323732302427}{324410234}a^{6}-\frac{1373454199623}{324410234}a^{5}+\frac{2083370880575}{324410234}a^{4}+\frac{883993703772}{162205117}a^{3}-\frac{2127444800995}{162205117}a^{2}-\frac{2997795034708}{162205117}a-\frac{1057746562621}{162205117}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 389304.384241 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 389304.384241 \cdot 2}{2\cdot\sqrt{17968343971336290304}}\cr\approx \mathstrut & 1.45799101403 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.8984171985668145152.5 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.6.8.2 | $x^{6} + 2 x^{4} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |