Normalized defining polynomial
\( x^{12} - 4 x^{11} - x^{10} + 20 x^{9} - 18 x^{8} - 6 x^{7} - 25 x^{6} + 78 x^{5} - 48 x^{4} - 10 x^{3} + \cdots + 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[6, 3]$ |
| |
| Discriminant: |
\(-168147445940224\)
\(\medspace = -\,2^{16}\cdot 37^{6}\)
|
| |
| Root discriminant: | \(15.33\) |
| |
| Galois root discriminant: | $2^{5/3}37^{1/2}\approx 19.31156727893628$ | ||
| Ramified primes: |
\(2\), \(37\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{21}a^{10}+\frac{2}{21}a^{9}-\frac{5}{21}a^{8}+\frac{1}{3}a^{7}-\frac{1}{21}a^{6}+\frac{3}{7}a^{5}-\frac{4}{21}a^{4}+\frac{1}{21}a^{3}+\frac{8}{21}a^{2}+\frac{1}{21}a-\frac{10}{21}$, $\frac{1}{147}a^{11}-\frac{1}{147}a^{10}-\frac{4}{147}a^{9}-\frac{41}{147}a^{8}+\frac{2}{49}a^{7}-\frac{37}{147}a^{6}+\frac{20}{49}a^{5}+\frac{62}{147}a^{4}-\frac{58}{147}a^{3}-\frac{37}{147}a^{2}+\frac{8}{147}a+\frac{16}{147}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{277}{147}a^{11}-\frac{405}{49}a^{10}+\frac{5}{147}a^{9}+\frac{6122}{147}a^{8}-\frac{6619}{147}a^{7}-\frac{768}{49}a^{6}-\frac{5591}{147}a^{5}+\frac{25826}{147}a^{4}-\frac{5619}{49}a^{3}-\frac{5650}{147}a^{2}+\frac{2533}{49}a-\frac{1721}{147}$, $\frac{554}{147}a^{11}-\frac{2129}{147}a^{10}-\frac{907}{147}a^{9}+\frac{11033}{147}a^{8}-\frac{8240}{147}a^{7}-\frac{1718}{49}a^{6}-\frac{14255}{147}a^{5}+\frac{41432}{147}a^{4}-\frac{19448}{147}a^{3}-\frac{10705}{147}a^{2}+\frac{10501}{147}a-\frac{697}{49}$, $a^{11}-4a^{10}-a^{9}+20a^{8}-18a^{7}-6a^{6}-25a^{5}+78a^{4}-48a^{3}-10a^{2}+21a-7$, $\frac{467}{147}a^{11}-\frac{592}{49}a^{10}-\frac{860}{147}a^{9}+\frac{9301}{147}a^{8}-\frac{6410}{147}a^{7}-\frac{1583}{49}a^{6}-\frac{12475}{147}a^{5}+\frac{34288}{147}a^{4}-\frac{4761}{49}a^{3}-\frac{9572}{147}a^{2}+\frac{2720}{49}a-\frac{1537}{147}$, $\frac{905}{147}a^{11}-\frac{3152}{147}a^{10}-\frac{859}{49}a^{9}+\frac{16907}{147}a^{8}-\frac{7408}{147}a^{7}-\frac{10021}{147}a^{6}-\frac{27565}{147}a^{5}+\frac{18939}{49}a^{4}-\frac{12695}{147}a^{3}-\frac{5998}{49}a^{2}+\frac{9844}{147}a-\frac{1319}{147}$, $\frac{370}{147}a^{11}-\frac{401}{49}a^{10}-\frac{428}{49}a^{9}+\frac{6488}{147}a^{8}-\frac{583}{49}a^{7}-\frac{3841}{147}a^{6}-\frac{12100}{147}a^{5}+\frac{6732}{49}a^{4}-\frac{718}{49}a^{3}-\frac{2097}{49}a^{2}+\frac{905}{49}a-\frac{205}{147}$, $\frac{156}{49}a^{11}-\frac{1672}{147}a^{10}-\frac{1193}{147}a^{9}+\frac{8882}{147}a^{8}-\frac{4591}{147}a^{7}-\frac{4940}{147}a^{6}-\frac{4591}{49}a^{5}+\frac{30745}{147}a^{4}-\frac{8944}{147}a^{3}-\frac{9161}{147}a^{2}+\frac{6068}{147}a-\frac{1052}{147}$, $\frac{124}{21}a^{11}-\frac{484}{21}a^{10}-\frac{60}{7}a^{9}+\frac{2491}{21}a^{8}-\frac{1958}{21}a^{7}-\frac{155}{3}a^{6}-\frac{452}{3}a^{5}+450a^{4}-\frac{4759}{21}a^{3}-\frac{723}{7}a^{2}+\frac{2459}{21}a-\frac{583}{21}$
|
| |
| Regulator: | \( 399.890130029 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 399.890130029 \cdot 1}{2\cdot\sqrt{168147445940224}}\cr\approx \mathstrut & 0.244785185742 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 9 conjugacy class representatives for $(C_6\times C_2):C_2$ |
| Character table for $(C_6\times C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.148.1 x3, 4.2.21904.1, 6.6.810448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 12 sibling: | 12.0.72712409055232.2 |
| Minimal sibling: | 12.0.72712409055232.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.16a2.8 | $x^{12} + 8 x^{11} + 33 x^{10} + 90 x^{9} + 180 x^{8} + 278 x^{7} + 339 x^{6} + 330 x^{5} + 254 x^{4} + 152 x^{3} + 67 x^{2} + 20 x + 9$ | $6$ | $2$ | $16$ | $(C_6\times C_2):C_2$ | $$[2, 2]_{3}^{2}$$ |
|
\(37\)
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |