Properties

Label 12.4.9341736328125.1
Degree $12$
Signature $[4, 4]$
Discriminant $3^{14}\cdot 5^{9}$
Root discriminant $12.05$
Ramified primes $3, 5$
Class number $1$
Class group Trivial
Galois group $S_3 \times C_4$ (as 12T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -24, 8, 57, -45, -40, 69, -27, -11, 15, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 15*x^10 - 11*x^9 - 27*x^8 + 69*x^7 - 40*x^6 - 45*x^5 + 57*x^4 + 8*x^3 - 24*x^2 - 3*x + 1)
 
gp: K = bnfinit(x^12 - 6*x^11 + 15*x^10 - 11*x^9 - 27*x^8 + 69*x^7 - 40*x^6 - 45*x^5 + 57*x^4 + 8*x^3 - 24*x^2 - 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 15 x^{10} - 11 x^{9} - 27 x^{8} + 69 x^{7} - 40 x^{6} - 45 x^{5} + 57 x^{4} + 8 x^{3} - 24 x^{2} - 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9341736328125=3^{14}\cdot 5^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{16999} a^{11} + \frac{513}{16999} a^{10} - \frac{5722}{16999} a^{9} + \frac{5096}{16999} a^{8} - \frac{7047}{16999} a^{7} - \frac{2539}{16999} a^{6} + \frac{8141}{16999} a^{5} - \frac{7617}{16999} a^{4} + \frac{7601}{16999} a^{3} + \frac{1159}{16999} a^{2} + \frac{6532}{16999} a + \frac{7304}{16999}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 56.4202909911 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\times S_3$ (as 12T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24
The 12 conjugacy class representatives for $S_3 \times C_4$
Character table for $S_3 \times C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.135.1, \(\Q(\zeta_{15})^+\), 6.2.91125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.12.14.9$x^{12} + 6 x^{11} + 12 x^{10} - 3 x^{9} + 12 x^{6} - 9 x^{5} + 9 x^{4} - 9 x^{3} - 9 x^{2} - 9$$6$$2$$14$$S_3 \times C_4$$[3/2]_{2}^{4}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_5.2t1.1c1$1$ $ 3 \cdot 5 $ $x^{2} - x + 4$ $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.5.4t1.1c1$1$ $ 5 $ $x^{4} - x^{3} + x^{2} - x + 1$ $C_4$ (as 4T1) $0$ $-1$
* 1.3_5.4t1.1c1$1$ $ 3 \cdot 5 $ $x^{4} - x^{3} - 4 x^{2} + 4 x + 1$ $C_4$ (as 4T1) $0$ $1$
1.5.4t1.1c2$1$ $ 5 $ $x^{4} - x^{3} + x^{2} - x + 1$ $C_4$ (as 4T1) $0$ $-1$
* 1.3_5.4t1.1c2$1$ $ 3 \cdot 5 $ $x^{4} - x^{3} - 4 x^{2} + 4 x + 1$ $C_4$ (as 4T1) $0$ $1$
* 2.3e3_5.3t2.1c1$2$ $ 3^{3} \cdot 5 $ $x^{3} + 3 x - 1$ $S_3$ (as 3T2) $1$ $0$
* 2.3e3_5.6t3.2c1$2$ $ 3^{3} \cdot 5 $ $x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{2} + 3$ $D_{6}$ (as 6T3) $1$ $0$
* 2.3e3_5e2.12t11.2c1$2$ $ 3^{3} \cdot 5^{2}$ $x^{12} - 6 x^{11} + 15 x^{10} - 11 x^{9} - 27 x^{8} + 69 x^{7} - 40 x^{6} - 45 x^{5} + 57 x^{4} + 8 x^{3} - 24 x^{2} - 3 x + 1$ $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.3e3_5e2.12t11.2c2$2$ $ 3^{3} \cdot 5^{2}$ $x^{12} - 6 x^{11} + 15 x^{10} - 11 x^{9} - 27 x^{8} + 69 x^{7} - 40 x^{6} - 45 x^{5} + 57 x^{4} + 8 x^{3} - 24 x^{2} - 3 x + 1$ $S_3 \times C_4$ (as 12T11) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.