Properties

Label 12.4.83927421234...576.21
Degree $12$
Signature $[4, 4]$
Discriminant $2^{24}\cdot 29^{8}$
Root discriminant $37.76$
Ramified primes $2, 29$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_4^2:C_3:C_2$ (as 12T62)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![113963, -70035, 34321, -24649, -5019, 3960, 1880, -384, -201, 81, -11, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 5*x^11 - 11*x^10 + 81*x^9 - 201*x^8 - 384*x^7 + 1880*x^6 + 3960*x^5 - 5019*x^4 - 24649*x^3 + 34321*x^2 - 70035*x + 113963)
 
gp: K = bnfinit(x^12 - 5*x^11 - 11*x^10 + 81*x^9 - 201*x^8 - 384*x^7 + 1880*x^6 + 3960*x^5 - 5019*x^4 - 24649*x^3 + 34321*x^2 - 70035*x + 113963, 1)
 

Normalized defining polynomial

\( x^{12} - 5 x^{11} - 11 x^{10} + 81 x^{9} - 201 x^{8} - 384 x^{7} + 1880 x^{6} + 3960 x^{5} - 5019 x^{4} - 24649 x^{3} + 34321 x^{2} - 70035 x + 113963 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8392742123471896576=2^{24}\cdot 29^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{76027129934032069354484885} a^{11} - \frac{1498596625684351313192253}{76027129934032069354484885} a^{10} + \frac{2608434529752413553520242}{76027129934032069354484885} a^{9} - \frac{1946482255899107516064804}{76027129934032069354484885} a^{8} - \frac{37056699976505709637612763}{76027129934032069354484885} a^{7} - \frac{4830293206193586343046684}{15205425986806413870896977} a^{6} + \frac{3902658061855118696553252}{76027129934032069354484885} a^{5} + \frac{7370411033884454163704233}{76027129934032069354484885} a^{4} + \frac{5320222118667500219946636}{76027129934032069354484885} a^{3} - \frac{26500093778405975371645386}{76027129934032069354484885} a^{2} - \frac{34729080241834822374165384}{76027129934032069354484885} a - \frac{5194434840635841859892099}{76027129934032069354484885}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 47267.6429218 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2:C_3:C_2$ (as 12T62):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 10 conjugacy class representatives for $C_4^2:C_3:C_2$
Character table for $C_4^2:C_3:C_2$

Intermediate fields

3.1.116.1, 6.2.215296.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ R ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.24.74$x^{8} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 6$$8$$1$$24$$C_4\wr C_2$$[2, 3, 4]^{4}$
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$