Normalized defining polynomial
\( x^{12} + 104 x^{8} - 416 x^{6} + 3601 x^{4} - 14352 x^{2} + 10400 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61578162252603107311616=2^{35}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} + \frac{5}{11} a^{4} - \frac{4}{11} a^{2} + \frac{2}{11}$, $\frac{1}{11} a^{7} + \frac{5}{11} a^{5} - \frac{4}{11} a^{3} + \frac{2}{11} a$, $\frac{1}{121} a^{8} - \frac{4}{121} a^{6} - \frac{5}{121} a^{4} - \frac{17}{121} a^{2} + \frac{59}{121}$, $\frac{1}{1210} a^{9} - \frac{24}{605} a^{7} + \frac{69}{605} a^{5} + \frac{28}{121} a^{3} - \frac{29}{1210} a$, $\frac{1}{1570580} a^{10} - \frac{1172}{392645} a^{8} - \frac{2668}{392645} a^{6} - \frac{11432}{78529} a^{4} + \frac{732361}{1570580} a^{2} - \frac{1742}{78529}$, $\frac{1}{3141160} a^{11} + \frac{63}{392645} a^{9} + \frac{3209}{392645} a^{7} - \frac{153188}{392645} a^{5} + \frac{1043881}{3141160} a^{3} + \frac{48214}{392645} a$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1072506.40426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.S_3^2$ (as 12T39):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2.S_3^2$ |
| Character table for $C_2.S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), 4.4.4499456.2, 6.2.760408064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.9 | $x^{4} + 12 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $13$ | 13.12.11.12 | $x^{12} + 26624$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |