Normalized defining polynomial
\( x^{12} - 17x^{10} + 119x^{8} - 442x^{6} + 935x^{4} - 1088x^{2} + 544 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{44}a^{10}-\frac{7}{44}a^{8}-\frac{1}{2}a^{7}-\frac{17}{44}a^{6}+\frac{1}{11}a^{4}-\frac{1}{2}a^{3}-\frac{15}{44}a^{2}-\frac{1}{2}a+\frac{4}{11}$, $\frac{1}{88}a^{11}+\frac{15}{88}a^{9}-\frac{17}{88}a^{7}-\frac{9}{44}a^{5}+\frac{7}{88}a^{3}+\frac{2}{11}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{8}a^{11}-\frac{1}{4}a^{10}-\frac{13}{8}a^{9}+\frac{13}{4}a^{8}+\frac{67}{8}a^{7}-\frac{67}{4}a^{6}-\frac{87}{4}a^{5}+\frac{87}{2}a^{4}+\frac{239}{8}a^{3}-\frac{239}{4}a^{2}-\frac{35}{2}a+35$, $\frac{15}{44}a^{10}-\frac{215}{44}a^{8}+\frac{1197}{44}a^{6}-\frac{1653}{22}a^{4}+\frac{4769}{44}a^{2}-\frac{721}{11}$, $\frac{3}{22}a^{10}-\frac{43}{22}a^{8}+\frac{235}{22}a^{6}-\frac{302}{11}a^{4}+\frac{725}{22}a^{2}-\frac{163}{11}$, $\frac{3}{88}a^{11}+\frac{1}{11}a^{10}-\frac{43}{88}a^{9}-\frac{25}{22}a^{8}+\frac{257}{88}a^{7}+\frac{60}{11}a^{6}-\frac{379}{44}a^{5}-\frac{289}{22}a^{4}+\frac{1121}{88}a^{3}+\frac{377}{22}a^{2}-\frac{175}{22}a-\frac{105}{11}$, $\frac{9}{88}a^{11}-\frac{9}{44}a^{10}-\frac{129}{88}a^{9}+\frac{129}{44}a^{8}+\frac{727}{88}a^{7}-\frac{727}{44}a^{6}-\frac{1005}{44}a^{5}+\frac{1027}{22}a^{4}+\frac{2791}{88}a^{3}-\frac{3055}{44}a^{2}-\frac{202}{11}a+\frac{481}{11}$, $\frac{9}{88}a^{11}+\frac{9}{44}a^{10}-\frac{129}{88}a^{9}-\frac{129}{44}a^{8}+\frac{727}{88}a^{7}+\frac{727}{44}a^{6}-\frac{1005}{44}a^{5}-\frac{1027}{22}a^{4}+\frac{2791}{88}a^{3}+\frac{3055}{44}a^{2}-\frac{202}{11}a-\frac{481}{11}$, $\frac{17}{88}a^{11}-\frac{5}{22}a^{10}-\frac{229}{88}a^{9}+\frac{34}{11}a^{8}+\frac{1207}{88}a^{7}-\frac{355}{22}a^{6}-\frac{1583}{44}a^{5}+\frac{893}{22}a^{4}+\frac{4387}{88}a^{3}-\frac{573}{11}a^{2}-\frac{329}{11}a+\frac{301}{11}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 71461.2964582 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 71461.2964582 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 0.840787635347 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.0.35936687942672580608.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.4.11.16 | $x^{4} + 12 x^{2} + 8 x + 18$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
2.6.6.6 | $x^{6} - 4 x^{5} + 30 x^{4} - 16 x^{3} + 164 x^{2} + 160 x + 88$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |