Normalized defining polynomial
\( x^{12} - 3 x^{11} + 2 x^{10} - 13 x^{9} + 19 x^{8} + 40 x^{7} - 108 x^{6} - 40 x^{5} + 240 x^{4} + \cdots - 16 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{8/3}17^{11/12}\approx 85.24289022322928$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{24}a^{9}-\frac{1}{24}a^{8}+\frac{1}{6}a^{7}-\frac{1}{24}a^{6}-\frac{11}{24}a^{5}+\frac{5}{12}a^{4}+\frac{1}{6}a^{3}+\frac{1}{6}a^{2}-\frac{1}{6}a+\frac{1}{3}$, $\frac{1}{48}a^{10}-\frac{1}{48}a^{9}-\frac{1}{24}a^{8}-\frac{7}{48}a^{7}+\frac{1}{48}a^{6}-\frac{1}{6}a^{5}+\frac{5}{24}a^{4}+\frac{1}{12}a^{3}+\frac{5}{12}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{20193072}a^{11}-\frac{65583}{6731024}a^{10}+\frac{50185}{3365512}a^{9}+\frac{26095}{6731024}a^{8}-\frac{1120145}{6731024}a^{7}+\frac{94940}{1262067}a^{6}-\frac{1685729}{10096536}a^{5}-\frac{336625}{5048268}a^{4}-\frac{797261}{1682756}a^{3}+\frac{490162}{1262067}a^{2}-\frac{277811}{2524134}a+\frac{100894}{420689}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{246007}{10096536}a^{11}-\frac{117638}{1262067}a^{10}+\frac{272507}{2524134}a^{9}-\frac{428656}{1262067}a^{8}+\frac{3341461}{5048268}a^{7}+\frac{1228749}{1682756}a^{6}-\frac{38725357}{10096536}a^{5}+\frac{4730165}{2524134}a^{4}+\frac{5204265}{841378}a^{3}-\frac{1587195}{420689}a^{2}-\frac{1259053}{2524134}a-\frac{545141}{1262067}$, $\frac{87461}{1262067}a^{11}-\frac{1267799}{5048268}a^{10}+\frac{1421929}{5048268}a^{9}-\frac{2603003}{2524134}a^{8}+\frac{9684877}{5048268}a^{7}+\frac{2966253}{1682756}a^{6}-\frac{22439521}{2524134}a^{5}+\frac{5829143}{2524134}a^{4}+\frac{6981429}{420689}a^{3}-\frac{4811317}{841378}a^{2}-\frac{2511896}{1262067}a-\frac{3110462}{1262067}$, $\frac{987013}{10096536}a^{11}-\frac{2936959}{10096536}a^{10}+\frac{545645}{3365512}a^{9}-\frac{1972651}{1682756}a^{8}+\frac{5828857}{3365512}a^{7}+\frac{43521071}{10096536}a^{6}-\frac{37497237}{3365512}a^{5}-\frac{8427309}{1682756}a^{4}+\frac{34190795}{1262067}a^{3}+\frac{16085113}{2524134}a^{2}-\frac{24984227}{2524134}a-\frac{4131724}{1262067}$, $\frac{564903}{6731024}a^{11}-\frac{3454799}{20193072}a^{10}-\frac{136079}{2524134}a^{9}-\frac{20064803}{20193072}a^{8}+\frac{11044079}{20193072}a^{7}+\frac{46770419}{10096536}a^{6}-\frac{54046585}{10096536}a^{5}-\frac{54057221}{5048268}a^{4}+\frac{78449017}{5048268}a^{3}+\frac{28998224}{1262067}a^{2}+\frac{23802667}{2524134}a+\frac{1132686}{420689}$, $\frac{459889}{10096536}a^{11}-\frac{271601}{1262067}a^{10}+\frac{3606239}{10096536}a^{9}-\frac{8568035}{10096536}a^{8}+\frac{9902443}{5048268}a^{7}-\frac{18835}{3365512}a^{6}-\frac{9363017}{1262067}a^{5}+\frac{39227803}{5048268}a^{4}+\frac{3963506}{420689}a^{3}-\frac{7424600}{420689}a^{2}+\frac{5653900}{1262067}a+\frac{5512645}{1262067}$, $\frac{73751}{841378}a^{11}-\frac{256111}{1262067}a^{10}+\frac{86045}{1682756}a^{9}-\frac{1981047}{1682756}a^{8}+\frac{861995}{841378}a^{7}+\frac{6262881}{1682756}a^{6}-\frac{29179211}{5048268}a^{5}-\frac{11117666}{1262067}a^{4}+\frac{38067641}{2524134}a^{3}+\frac{14310253}{841378}a^{2}+\frac{11506964}{1262067}a+\frac{2755978}{1262067}$, $\frac{3594565}{20193072}a^{11}-\frac{10998175}{20193072}a^{10}+\frac{1650265}{5048268}a^{9}-\frac{43785487}{20193072}a^{8}+\frac{68269303}{20193072}a^{7}+\frac{78115721}{10096536}a^{6}-\frac{207278755}{10096536}a^{5}-\frac{39789593}{5048268}a^{4}+\frac{249592151}{5048268}a^{3}+\frac{13899692}{1262067}a^{2}-\frac{14311707}{841378}a-\frac{2580278}{420689}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 187300.206044 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 187300.206044 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.20370613388 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.2246042996417036288.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{8}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
2.6.11.7 | $x^{6} + 4 x^{2} + 4 x + 2$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |