Normalized defining polynomial
\( x^{12} - 3 x^{11} + 2 x^{10} - 13 x^{9} + 36 x^{8} - 45 x^{7} + 79 x^{6} - 142 x^{5} + 70 x^{4} + \cdots - 50 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{8/3}17^{11/12}\approx 85.24289022322928$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}$, $\frac{1}{75845185210}a^{11}+\frac{8291598366}{37922592605}a^{10}-\frac{22503151593}{75845185210}a^{9}+\frac{2618773156}{37922592605}a^{8}+\frac{12679667921}{75845185210}a^{7}+\frac{952348414}{7584518521}a^{6}-\frac{2242522818}{37922592605}a^{5}-\frac{10333839736}{37922592605}a^{4}+\frac{2796594977}{7584518521}a^{3}+\frac{18051248908}{37922592605}a^{2}+\frac{10254936118}{37922592605}a-\frac{209839253}{7584518521}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{134369668}{37922592605}a^{11}-\frac{195591049}{37922592605}a^{10}-\frac{621707954}{37922592605}a^{9}-\frac{717747769}{37922592605}a^{8}+\frac{2422402723}{37922592605}a^{7}+\frac{880758988}{7584518521}a^{6}-\frac{7399216398}{37922592605}a^{5}-\frac{1616670716}{37922592605}a^{4}-\frac{5369531966}{7584518521}a^{3}+\frac{35532445113}{37922592605}a^{2}+\frac{27130216633}{37922592605}a-\frac{5882987295}{7584518521}$, $\frac{63090957}{7584518521}a^{11}-\frac{210860237}{7584518521}a^{10}+\frac{158952693}{7584518521}a^{9}-\frac{773323551}{7584518521}a^{8}+\frac{2561616938}{7584518521}a^{7}-\frac{3310624003}{7584518521}a^{6}+\frac{4691925572}{7584518521}a^{5}-\frac{10158077038}{7584518521}a^{4}+\frac{7323736710}{7584518521}a^{3}-\frac{362115781}{7584518521}a^{2}+\frac{20833384449}{7584518521}a-\frac{24564406733}{7584518521}$, $\frac{3333491241}{75845185210}a^{11}-\frac{5443400433}{75845185210}a^{10}-\frac{1193363283}{75845185210}a^{9}-\frac{41802880863}{75845185210}a^{8}+\frac{56728012511}{75845185210}a^{7}-\frac{12391674215}{15169037042}a^{6}+\frac{67876449442}{37922592605}a^{5}-\frac{105411748111}{37922592605}a^{4}-\frac{18101395756}{7584518521}a^{3}-\frac{25127900207}{37922592605}a^{2}+\frac{203470482718}{37922592605}a+\frac{9482117338}{7584518521}$, $\frac{6855087419}{75845185210}a^{11}-\frac{7013518236}{37922592605}a^{10}+\frac{1814003293}{75845185210}a^{9}-\frac{45269971131}{37922592605}a^{8}+\frac{158906668399}{75845185210}a^{7}-\frac{17010246773}{7584518521}a^{6}+\frac{205838107618}{37922592605}a^{5}-\frac{295865520344}{37922592605}a^{4}-\frac{7046987888}{7584518521}a^{3}-\frac{73723118323}{37922592605}a^{2}+\frac{552028957602}{37922592605}a+\frac{25856642075}{7584518521}$, $\frac{300761296}{37922592605}a^{11}+\frac{431535097}{37922592605}a^{10}-\frac{4157821118}{37922592605}a^{9}+\frac{1088050377}{37922592605}a^{8}-\frac{8317010959}{37922592605}a^{7}+\frac{8190275996}{7584518521}a^{6}-\frac{54955239826}{37922592605}a^{5}+\frac{92555763538}{37922592605}a^{4}-\frac{36923606474}{7584518521}a^{3}+\frac{111496985261}{37922592605}a^{2}+\frac{150317782826}{37922592605}a+\frac{8726861}{7584518521}$, $\frac{305859034}{7584518521}a^{11}-\frac{572227494}{7584518521}a^{10}+\frac{39277400}{7584518521}a^{9}-\frac{4078650289}{7584518521}a^{8}+\frac{6219066750}{7584518521}a^{7}-\frac{7573110070}{7584518521}a^{6}+\frac{17492758163}{7584518521}a^{5}-\frac{23661481447}{7584518521}a^{4}-\frac{2727610996}{7584518521}a^{3}-\frac{7182503427}{7584518521}a^{2}+\frac{53766325441}{7584518521}a+\frac{13105222187}{7584518521}$, $\frac{362170234}{37922592605}a^{11}-\frac{1717420272}{37922592605}a^{10}+\frac{2832942838}{37922592605}a^{9}-\frac{6297739972}{37922592605}a^{8}+\frac{20771363934}{37922592605}a^{7}-\frac{8382765982}{7584518521}a^{6}+\frac{61717688516}{37922592605}a^{5}-\frac{98347428948}{37922592605}a^{4}+\frac{25386537352}{7584518521}a^{3}-\frac{74686048036}{37922592605}a^{2}+\frac{2383040804}{37922592605}a-\frac{60116394439}{7584518521}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 65986.6167804 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 65986.6167804 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 0.776374544503 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.2246042996417036288.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.11.8 | $x^{6} + 4 x^{5} + 4 x^{2} + 4 x + 2$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |