Normalized defining polynomial
\( x^{12} + 17x^{10} + 51x^{8} - 221x^{6} - 408x^{4} + 204x^{2} + 544 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{55/24}17^{11/12}\approx 65.73125404566245$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2192704}a^{10}-\frac{92925}{2192704}a^{8}-\frac{1}{4}a^{7}+\frac{122521}{2192704}a^{6}-\frac{635131}{2192704}a^{4}+\frac{1}{4}a^{3}-\frac{541959}{1096352}a^{2}+\frac{63171}{137044}$, $\frac{1}{2192704}a^{11}-\frac{92925}{2192704}a^{9}-\frac{425655}{2192704}a^{7}+\frac{461221}{2192704}a^{5}-\frac{1}{2}a^{4}-\frac{267871}{1096352}a^{3}-\frac{1}{2}a^{2}-\frac{5351}{137044}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{16373}{2192704}a^{11}+\frac{329}{68522}a^{10}+\frac{275551}{2192704}a^{9}+\frac{11235}{137044}a^{8}+\frac{808525}{2192704}a^{7}+\frac{18473}{68522}a^{6}-\frac{3390199}{2192704}a^{5}-\frac{103303}{137044}a^{4}-\frac{2362499}{1096352}a^{3}-\frac{44528}{34261}a^{2}+\frac{27715}{137044}a-\frac{71083}{34261}$, $\frac{2691}{548176}a^{11}-\frac{7945}{2192704}a^{10}+\frac{44125}{548176}a^{9}-\frac{103947}{2192704}a^{8}+\frac{113191}{548176}a^{7}+\frac{131231}{2192704}a^{6}-\frac{609973}{548176}a^{5}+\frac{3444771}{2192704}a^{4}-\frac{194987}{274088}a^{3}-\frac{1154577}{1096352}a^{2}+\frac{92862}{34261}a-\frac{312555}{137044}$, $\frac{1939}{548176}a^{11}-\frac{16497}{2192704}a^{10}+\frac{31285}{548176}a^{9}-\frac{264547}{2192704}a^{8}+\frac{70967}{548176}a^{7}-\frac{652201}{2192704}a^{6}-\frac{452757}{548176}a^{5}+\frac{3757275}{2192704}a^{4}-\frac{73631}{274088}a^{3}+\frac{1591591}{1096352}a^{2}-\frac{28767}{34261}a-\frac{323499}{137044}$, $\frac{17783}{1096352}a^{10}+\frac{265365}{1096352}a^{8}+\frac{339519}{1096352}a^{6}-\frac{4849853}{1096352}a^{4}+\frac{1469887}{548176}a^{2}+\frac{225791}{68522}$, $\frac{1939}{548176}a^{11}+\frac{16497}{2192704}a^{10}+\frac{31285}{548176}a^{9}+\frac{264547}{2192704}a^{8}+\frac{70967}{548176}a^{7}+\frac{652201}{2192704}a^{6}-\frac{452757}{548176}a^{5}-\frac{3757275}{2192704}a^{4}-\frac{73631}{274088}a^{3}-\frac{1591591}{1096352}a^{2}-\frac{28767}{34261}a+\frac{323499}{137044}$, $\frac{1159}{548176}a^{10}+\frac{16509}{548176}a^{8}+\frac{24255}{548176}a^{6}-\frac{190549}{548176}a^{4}+\frac{79215}{274088}a^{2}-\frac{568}{34261}$, $\frac{2489}{1096352}a^{10}+\frac{39947}{1096352}a^{8}+\frac{168913}{1096352}a^{6}+\frac{98525}{1096352}a^{4}-\frac{971167}{548176}a^{2}-\frac{162415}{68522}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 126704.356288 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 126704.356288 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.49075739444 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.6 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |