Normalized defining polynomial
\( x^{12} - 17x^{10} + 85x^{8} - 306x^{6} + 748x^{4} - 1003x^{2} + 544 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}17^{11/12}\approx 53.69965587306223$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{252304}a^{10}+\frac{21441}{126152}a^{8}+\frac{46539}{252304}a^{6}-\frac{5297}{252304}a^{4}+\frac{6973}{19408}a^{2}-\frac{694}{15769}$, $\frac{1}{504608}a^{11}-\frac{1}{504608}a^{10}+\frac{21441}{252304}a^{9}+\frac{104711}{252304}a^{8}+\frac{46539}{504608}a^{7}-\frac{46539}{504608}a^{6}+\frac{247007}{504608}a^{5}+\frac{5297}{504608}a^{4}-\frac{12435}{38816}a^{3}-\frac{6973}{38816}a^{2}+\frac{15075}{31538}a+\frac{347}{15769}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{705}{126152}a^{11}-\frac{1929}{252304}a^{10}-\frac{3283}{31538}a^{9}+\frac{18167}{126152}a^{8}+\frac{73551}{126152}a^{7}-\frac{205811}{252304}a^{6}-\frac{233667}{126152}a^{5}+\frac{630361}{252304}a^{4}+\frac{51835}{9704}a^{3}-\frac{137029}{19408}a^{2}-\frac{366135}{63076}a+\frac{124513}{15769}$, $\frac{705}{126152}a^{11}+\frac{1929}{252304}a^{10}-\frac{3283}{31538}a^{9}-\frac{18167}{126152}a^{8}+\frac{73551}{126152}a^{7}+\frac{205811}{252304}a^{6}-\frac{233667}{126152}a^{5}-\frac{630361}{252304}a^{4}+\frac{51835}{9704}a^{3}+\frac{137029}{19408}a^{2}-\frac{366135}{63076}a-\frac{124513}{15769}$, $\frac{2021}{38816}a^{11}-\frac{41365}{504608}a^{10}-\frac{15507}{19408}a^{9}+\frac{320051}{252304}a^{8}+\frac{120599}{38816}a^{7}-\frac{2529255}{504608}a^{6}-\frac{418997}{38816}a^{5}+\frac{8688869}{504608}a^{4}+\frac{805245}{38816}a^{3}-\frac{1355009}{38816}a^{2}-\frac{20794}{1213}a+\frac{461166}{15769}$, $\frac{18045}{252304}a^{10}-\frac{131491}{126152}a^{8}+\frac{885455}{252304}a^{6}-\frac{3241101}{252304}a^{4}+\frac{413289}{19408}a^{2}-\frac{239179}{15769}$, $\frac{17161}{252304}a^{11}+\frac{85}{1213}a^{10}-\frac{130997}{126152}a^{9}-\frac{1308}{1213}a^{8}+\frac{996683}{252304}a^{7}+\frac{5074}{1213}a^{6}-\frac{3415405}{252304}a^{5}-\frac{17204}{1213}a^{4}+\frac{513089}{19408}a^{3}+\frac{34153}{1213}a^{2}-\frac{1199231}{63076}a-\frac{25599}{1213}$, $\frac{17161}{252304}a^{11}-\frac{85}{1213}a^{10}-\frac{130997}{126152}a^{9}+\frac{1308}{1213}a^{8}+\frac{996683}{252304}a^{7}-\frac{5074}{1213}a^{6}-\frac{3415405}{252304}a^{5}+\frac{17204}{1213}a^{4}+\frac{513089}{19408}a^{3}-\frac{34153}{1213}a^{2}-\frac{1199231}{63076}a+\frac{25599}{1213}$, $\frac{1425}{38816}a^{11}-\frac{40249}{504608}a^{10}-\frac{9323}{19408}a^{9}+\frac{279327}{252304}a^{8}+\frac{39755}{38816}a^{7}-\frac{1557139}{504608}a^{6}-\frac{163481}{38816}a^{5}+\frac{5805065}{504608}a^{4}+\frac{82513}{38816}a^{3}-\frac{598837}{38816}a^{2}+\frac{24763}{4852}a+\frac{42376}{15769}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 131794.878234 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 131794.878234 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.55065062507 \end{aligned}\]
Galois group
$S_3^2:C_4$ (as 12T80):
A solvable group of order 144 |
The 18 conjugacy class representatives for $S_3^2:C_4$ |
Character table for $S_3^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.157216.1, 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.0.2246042996417036288.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |