Normalized defining polynomial
\( x^{12} - 4 x^{11} - 4 x^{10} + 12 x^{9} + 59 x^{8} - 172 x^{7} - 20 x^{6} + 540 x^{5} - 189 x^{4} + \cdots - 1007 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{37/12}17^{11/12}\approx 113.78560715460762$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}+\frac{3}{8}a+\frac{3}{8}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{8}a^{2}+\frac{1}{8}$, $\frac{1}{215653797328}a^{11}-\frac{3748169297}{215653797328}a^{10}-\frac{5608958157}{215653797328}a^{9}-\frac{18140412547}{215653797328}a^{8}+\frac{4017096081}{53913449332}a^{7}+\frac{6248134971}{53913449332}a^{6}-\frac{11863726057}{53913449332}a^{5}+\frac{9979500337}{53913449332}a^{4}-\frac{43640464693}{215653797328}a^{3}+\frac{93845745509}{215653797328}a^{2}+\frac{53636613289}{215653797328}a+\frac{81822980535}{215653797328}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2496295847}{215653797328}a^{11}-\frac{8132628771}{215653797328}a^{10}-\frac{15218293303}{215653797328}a^{9}+\frac{14970789283}{215653797328}a^{8}+\frac{39863913251}{53913449332}a^{7}-\frac{75868231091}{53913449332}a^{6}-\frac{63474610895}{53913449332}a^{5}+\frac{247483079043}{53913449332}a^{4}+\frac{390539846013}{215653797328}a^{3}-\frac{2895586726065}{215653797328}a^{2}+\frac{624769229179}{215653797328}a+\frac{2264196448137}{215653797328}$, $\frac{272877035}{215653797328}a^{11}+\frac{204786339}{215653797328}a^{10}-\frac{3400112667}{215653797328}a^{9}-\frac{10098131767}{215653797328}a^{8}+\frac{2124387959}{53913449332}a^{7}+\frac{10345166655}{53913449332}a^{6}-\frac{5423190933}{53913449332}a^{5}-\frac{30904833003}{53913449332}a^{4}+\frac{143678767481}{215653797328}a^{3}+\frac{373225719793}{215653797328}a^{2}-\frac{182967555401}{215653797328}a-\frac{635369466821}{215653797328}$, $\frac{14752474141}{215653797328}a^{11}-\frac{41407210995}{215653797328}a^{10}-\frac{108293882099}{215653797328}a^{9}+\frac{47798704629}{215653797328}a^{8}+\frac{57928464840}{13478362333}a^{7}-\frac{358772953681}{53913449332}a^{6}-\frac{251273302851}{26956724666}a^{5}+\frac{1389520355531}{53913449332}a^{4}+\frac{3860571963859}{215653797328}a^{3}-\frac{16067461565745}{215653797328}a^{2}+\frac{1972242234755}{215653797328}a+\frac{12422223238575}{215653797328}$, $\frac{18936405}{2223235024}a^{11}-\frac{30697115}{2223235024}a^{10}-\frac{168026069}{2223235024}a^{9}-\frac{150382145}{2223235024}a^{8}+\frac{231558997}{555808756}a^{7}-\frac{199631419}{555808756}a^{6}-\frac{746072125}{555808756}a^{5}+\frac{970572713}{555808756}a^{4}+\frac{7934760535}{2223235024}a^{3}-\frac{9823064825}{2223235024}a^{2}-\frac{3515622127}{2223235024}a+\frac{9941514373}{2223235024}$, $\frac{3790264543}{215653797328}a^{11}-\frac{9371987823}{215653797328}a^{10}-\frac{30742754271}{215653797328}a^{9}-\frac{166202561}{215653797328}a^{8}+\frac{58935137929}{53913449332}a^{7}-\frac{68369709195}{53913449332}a^{6}-\frac{137419976603}{53913449332}a^{5}+\frac{301830580269}{53913449332}a^{4}+\frac{1343928128573}{215653797328}a^{3}-\frac{3375335306709}{215653797328}a^{2}-\frac{495669659789}{215653797328}a+\frac{2117894602117}{215653797328}$, $\frac{236650549}{13478362333}a^{11}-\frac{693718270}{13478362333}a^{10}-\frac{3374983407}{26956724666}a^{9}+\frac{3494285189}{53913449332}a^{8}+\frac{30582947863}{26956724666}a^{7}-\frac{23067475913}{13478362333}a^{6}-\frac{58366457527}{26956724666}a^{5}+\frac{87117538968}{13478362333}a^{4}+\frac{114619077373}{26956724666}a^{3}-\frac{250959318574}{13478362333}a^{2}+\frac{25096248514}{13478362333}a+\frac{571118939835}{53913449332}$, $\frac{19023}{2016436}a^{11}-\frac{14828}{504109}a^{10}-\frac{156739}{2016436}a^{9}+\frac{42565}{504109}a^{8}+\frac{358634}{504109}a^{7}-\frac{500184}{504109}a^{6}-\frac{894549}{504109}a^{5}+\frac{2466468}{504109}a^{4}+\frac{7157385}{2016436}a^{3}-\frac{6979972}{504109}a^{2}-\frac{752921}{2016436}a+\frac{4577596}{504109}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 101687.346638 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 101687.346638 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.19641635349 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.4.11.14 | $x^{4} + 8 x + 10$ | $4$ | $1$ | $11$ | $D_{4}$ | $[3, 4]^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |