Normalized defining polynomial
\( x^{12} - 3 x^{11} + x^{10} - 20 x^{9} + 161 x^{8} - 225 x^{7} - 1799 x^{6} + 67 x^{5} + 11949 x^{4} + 8567 x^{3} - 77255 x^{2} - 36646 x + 63001 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(434774896093890625=5^{6}\cdot 7^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} - \frac{2}{41} a^{7} - \frac{16}{41} a^{6} - \frac{11}{41} a^{5} + \frac{6}{41} a^{4} - \frac{6}{41} a^{3} - \frac{5}{41} a^{2} - \frac{13}{41} a + \frac{1}{41}$, $\frac{1}{82} a^{9} + \frac{21}{82} a^{7} - \frac{1}{41} a^{6} + \frac{25}{82} a^{5} - \frac{35}{82} a^{4} + \frac{12}{41} a^{3} + \frac{9}{41} a^{2} + \frac{8}{41} a - \frac{39}{82}$, $\frac{1}{82} a^{10} - \frac{1}{82} a^{8} - \frac{20}{41} a^{7} - \frac{33}{82} a^{6} - \frac{39}{82} a^{5} - \frac{13}{41} a^{4} - \frac{7}{41} a^{3} - \frac{19}{41} a^{2} + \frac{1}{82} a - \frac{11}{41}$, $\frac{1}{60889744898344186571878} a^{11} + \frac{18551235584170418430}{30444872449172093285939} a^{10} + \frac{370763442041787281209}{60889744898344186571878} a^{9} + \frac{288030784920132865726}{30444872449172093285939} a^{8} - \frac{25357234611891739504761}{60889744898344186571878} a^{7} - \frac{10804859005587967166857}{60889744898344186571878} a^{6} - \frac{14341939335374388831569}{30444872449172093285939} a^{5} + \frac{8720503949562437424433}{30444872449172093285939} a^{4} + \frac{10313813819744237600732}{30444872449172093285939} a^{3} + \frac{2978023137266619898439}{60889744898344186571878} a^{2} - \frac{10613907706885060565203}{30444872449172093285939} a - \frac{47104597366504789095}{121294312546502363689}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6172.51259567 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times A_4$ (as 12T25):
| A solvable group of order 48 |
| The 16 conjugacy class representatives for $C_2^2 \times A_4$ |
| Character table for $C_2^2 \times A_4$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), \(\Q(\zeta_{7})^+\), 6.2.50721125.1, 6.2.31213.1, 6.6.659374625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.4.15222677640625.1, 12.0.2572632521265625.1, 12.0.2572632521265625.2, 12.4.434774896093890625.1 |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |