Properties

Label 12.4.37295073688455625.1
Degree $12$
Signature $[4, 4]$
Discriminant $5^{4}\cdot 7^{2}\cdot 19^{2}\cdot 241^{4}$
Root discriminant $24.04$
Ramified primes $5, 7, 19, 241$
Class number $1$
Class group Trivial
Galois group $A_{12}$ (as 12T300)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 4, 1, -7, 11, -9, 1, 5, -6, 6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 6*x^10 - 6*x^9 + 5*x^8 + x^7 - 9*x^6 + 11*x^5 - 7*x^4 + x^3 + 4*x^2 - 5*x + 1)
 
gp: K = bnfinit(x^12 - 4*x^11 + 6*x^10 - 6*x^9 + 5*x^8 + x^7 - 9*x^6 + 11*x^5 - 7*x^4 + x^3 + 4*x^2 - 5*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 6 x^{10} - 6 x^{9} + 5 x^{8} + x^{7} - 9 x^{6} + 11 x^{5} - 7 x^{4} + x^{3} + 4 x^{2} - 5 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(37295073688455625=5^{4}\cdot 7^{2}\cdot 19^{2}\cdot 241^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7, 19, 241$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a - 1 \),  \( a \),  \( a^{10} - 4 a^{9} + 6 a^{8} - 7 a^{7} + 8 a^{6} - 2 a^{5} - 5 a^{4} + 6 a^{3} - 7 a^{2} + 3 a + 1 \),  \( a^{6} - 2 a^{5} + a^{4} - a^{3} + a - 2 \),  \( a^{9} - 3 a^{8} + 4 a^{7} - 6 a^{6} + 6 a^{5} - 3 a^{4} - a^{3} + 4 a^{2} - 4 a + 3 \),  \( a^{4} - 2 a^{3} + a - 1 \),  \( a^{11} - 4 a^{10} + 6 a^{9} - 6 a^{8} + 5 a^{7} + a^{6} - 10 a^{5} + 12 a^{4} - 7 a^{3} + 2 a^{2} + 5 a - 7 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9588.54494412 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_{12}$ (as 12T300):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 239500800
The 43 conjugacy class representatives for $A_{12}$
Character table for $A_{12}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ ${\href{/LocalNumberField/3.11.0.1}{11} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ R R ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ R ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.3.2.1$x^{3} - 5$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.5.0.1$x^{5} - x + 2$$1$$5$$0$$C_5$$[\ ]^{5}$
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.5.0.1$x^{5} - x + 4$$1$$5$$0$$C_5$$[\ ]^{5}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
241Data not computed