Normalized defining polynomial
\( x^{12} - 5 x^{11} + 14 x^{10} - 25 x^{9} + 34 x^{8} - 42 x^{7} + 24 x^{6} - 11 x^{5} + 5 x^{4} + 18 x^{3} + 14 x^{2} - x - 1 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(294052163113917=3^{3}\cdot 13^{10}\cdot 79\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{71495} a^{11} - \frac{3338}{71495} a^{10} + \frac{946}{71495} a^{9} - \frac{21562}{71495} a^{8} + \frac{28004}{71495} a^{7} - \frac{4420}{14299} a^{6} + \frac{19474}{71495} a^{5} - \frac{17991}{71495} a^{4} + \frac{8301}{71495} a^{3} + \frac{15649}{71495} a^{2} + \frac{33247}{71495} a - \frac{9301}{71495}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315.403295381 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.(C_2\times C_6)$ (as 12T134):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2^5.(C_2\times C_6)$ |
| Character table for $C_2^5.(C_2\times C_6)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |