Normalized defining polynomial
\( x^{12} - 6 x^{11} + 10 x^{10} - 8 x^{9} + 100 x^{8} - 392 x^{7} + 168 x^{6} + 1696 x^{5} - 4040 x^{4} + 4688 x^{3} - 2960 x^{2} - 960 x + 2432 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2312881695184912384=2^{24}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{936} a^{8} + \frac{11}{468} a^{7} + \frac{49}{468} a^{6} - \frac{5}{234} a^{5} + \frac{4}{117} a^{4} - \frac{25}{117} a^{3} - \frac{4}{13} a^{2} - \frac{32}{117} a + \frac{28}{117}$, $\frac{1}{2808} a^{9} + \frac{41}{1404} a^{7} + \frac{41}{702} a^{6} - \frac{58}{351} a^{5} - \frac{109}{702} a^{4} - \frac{25}{702} a^{3} + \frac{58}{351} a^{2} - \frac{29}{117} a + \frac{86}{351}$, $\frac{1}{16848} a^{10} + \frac{1}{8424} a^{9} - \frac{1}{2106} a^{8} - \frac{31}{2106} a^{7} - \frac{121}{1053} a^{6} + \frac{115}{1053} a^{5} - \frac{17}{117} a^{4} + \frac{59}{702} a^{3} - \frac{943}{2106} a^{2} + \frac{343}{1053} a + \frac{230}{1053}$, $\frac{1}{101088} a^{11} - \frac{1}{50544} a^{10} + \frac{1}{50544} a^{9} - \frac{785}{25272} a^{7} - \frac{263}{3159} a^{6} + \frac{349}{12636} a^{5} - \frac{244}{1053} a^{4} + \frac{95}{12636} a^{3} + \frac{1025}{2106} a^{2} + \frac{937}{6318} a - \frac{667}{3159}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59416.9571343 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_3:C_2$ (as 12T62):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $C_4^2:C_3:C_2$ |
| Character table for $C_4^2:C_3:C_2$ |
Intermediate fields
| 3.1.104.1, 6.2.7311616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.8.20.54 | $x^{8} + 4 x^{5} + 6 x^{4} + 14$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.8.7.4 | $x^{8} + 104$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |