Normalized defining polynomial
\( x^{12} + 10 x^{10} + 35 x^{8} - 40 x^{6} - 245 x^{4} - 274 x^{2} + 405 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2048000000000000000=2^{26}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{20} a^{6} - \frac{1}{2} a^{5} - \frac{3}{20} a^{4} - \frac{9}{20} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{20} a^{7} - \frac{3}{20} a^{5} - \frac{1}{2} a^{4} - \frac{9}{20} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{140} a^{8} - \frac{3}{140} a^{6} - \frac{1}{2} a^{5} - \frac{69}{140} a^{4} + \frac{1}{28} a^{2} - \frac{1}{2} a - \frac{2}{7}$, $\frac{1}{140} a^{9} - \frac{3}{140} a^{7} - \frac{69}{140} a^{5} - \frac{1}{2} a^{4} + \frac{1}{28} a^{3} - \frac{2}{7} a - \frac{1}{2}$, $\frac{1}{700} a^{10} - \frac{1}{700} a^{8} + \frac{4}{175} a^{6} + \frac{21}{50} a^{4} + \frac{131}{700} a^{2} - \frac{9}{140}$, $\frac{1}{12600} a^{11} - \frac{1}{1400} a^{10} + \frac{19}{12600} a^{9} + \frac{1}{1400} a^{8} + \frac{13}{6300} a^{7} - \frac{2}{175} a^{6} - \frac{1549}{3150} a^{5} + \frac{29}{100} a^{4} - \frac{557}{1800} a^{3} + \frac{569}{1400} a^{2} + \frac{181}{2520} a + \frac{9}{280}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 213757.98619 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $A_5:C_4$ |
| Character table for $A_5:C_4$ |
Intermediate fields
| 6.2.80000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.26.83 | $x^{12} + 4 x^{7} + 4 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T27 | $[8/3, 8/3]_{3}^{4}$ |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.5.7.2 | $x^{5} + 10 x^{3} + 5$ | $5$ | $1$ | $7$ | $F_5$ | $[7/4]_{4}$ | |
| 5.5.7.2 | $x^{5} + 10 x^{3} + 5$ | $5$ | $1$ | $7$ | $F_5$ | $[7/4]_{4}$ |