Normalized defining polynomial
\( x^{12} - x^{11} - 25 x^{10} + 18 x^{9} - 110 x^{8} - 65 x^{7} - 496 x^{6} + 4501 x^{5} - 1015 x^{4} - 7117 x^{3} - 5700 x^{2} - 10800 x - 3375 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202700943101784875881=7^{8}\cdot 181^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{30} a^{7} + \frac{2}{15} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{4}{15} a - \frac{1}{2}$, $\frac{1}{30} a^{8} + \frac{2}{15} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{4}{15} a^{2} - \frac{1}{2} a$, $\frac{1}{210} a^{9} + \frac{1}{70} a^{8} - \frac{1}{105} a^{7} - \frac{1}{5} a^{6} + \frac{16}{35} a^{5} - \frac{13}{35} a^{4} - \frac{44}{105} a^{3} + \frac{29}{70} a^{2} - \frac{1}{70} a + \frac{3}{7}$, $\frac{1}{210} a^{10} + \frac{1}{70} a^{8} - \frac{1}{210} a^{7} + \frac{34}{105} a^{6} + \frac{34}{105} a^{5} + \frac{52}{105} a^{4} + \frac{33}{70} a^{3} + \frac{29}{105} a^{2} - \frac{41}{210} a + \frac{3}{14}$, $\frac{1}{241084090513772100} a^{11} - \frac{260520248468453}{120542045256886050} a^{10} - \frac{6972240971959}{9643363620550884} a^{9} + \frac{44292456018807}{26787121168196900} a^{8} - \frac{183541881011179}{48216818102754420} a^{7} - \frac{4944838956575879}{24108409051377210} a^{6} + \frac{13126003250656957}{120542045256886050} a^{5} - \frac{79644218727958289}{241084090513772100} a^{4} + \frac{8666508645752813}{24108409051377210} a^{3} - \frac{111022198747772407}{241084090513772100} a^{2} + \frac{1129350288260813}{5357424233639380} a - \frac{492401491197295}{1071484846727876}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 234787.839792 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_3$ (as 12T31):
| A solvable group of order 48 |
| The 8 conjugacy class representatives for $C_4^2:C_3$ |
| Character table for $C_4^2:C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.78659161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.4.3.3 | $x^{4} + 362$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 181.4.3.3 | $x^{4} + 362$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |