Normalized defining polynomial
\( x^{12} + 4x^{10} + 50x^{8} - 280x^{4} - 416x^{2} + 16 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(1717986918400000000\)
\(\medspace = 2^{42}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(33.08\) |
| |
| Galois root discriminant: | $2^{67/16}5^{2/3}\approx 53.277410689660464$ | ||
| Ramified primes: |
\(2\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{10}a^{6}+\frac{1}{5}a^{4}-\frac{1}{5}a^{2}+\frac{2}{5}$, $\frac{1}{20}a^{7}+\frac{1}{10}a^{5}-\frac{1}{10}a^{3}+\frac{1}{5}a$, $\frac{1}{100}a^{8}-\frac{1}{25}a^{6}+\frac{4}{25}a^{4}+\frac{9}{25}a^{2}-\frac{6}{25}$, $\frac{1}{100}a^{9}+\frac{1}{100}a^{7}-\frac{6}{25}a^{5}+\frac{13}{50}a^{3}-\frac{1}{25}a$, $\frac{1}{5000}a^{10}-\frac{1}{500}a^{8}+\frac{19}{500}a^{6}-\frac{4}{125}a^{4}+\frac{49}{125}a^{2}+\frac{268}{625}$, $\frac{1}{5000}a^{11}-\frac{1}{500}a^{9}-\frac{3}{250}a^{7}-\frac{33}{250}a^{5}+\frac{123}{250}a^{3}+\frac{143}{625}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3}{625}a^{10}+\frac{11}{500}a^{8}+\frac{29}{125}a^{6}+\frac{13}{250}a^{4}-\frac{159}{125}a^{2}-\frac{1243}{625}$, $\frac{8}{625}a^{10}+\frac{31}{500}a^{8}+\frac{84}{125}a^{6}+\frac{123}{250}a^{4}-\frac{509}{125}a^{2}-\frac{5073}{625}$, $\frac{1}{1000}a^{11}-\frac{8}{625}a^{10}-\frac{4}{125}a^{8}+\frac{1}{20}a^{7}-\frac{74}{125}a^{6}-\frac{1}{5}a^{5}+\frac{111}{125}a^{4}+\frac{13}{25}a^{3}+\frac{344}{125}a^{2}-\frac{187}{125}a+\frac{123}{625}$, $\frac{133}{1000}a^{11}-\frac{3}{625}a^{10}+\frac{27}{50}a^{9}-\frac{11}{500}a^{8}+\frac{669}{100}a^{7}-\frac{29}{125}a^{6}+\frac{11}{25}a^{5}-\frac{13}{250}a^{4}-\frac{184}{5}a^{3}+\frac{284}{125}a^{2}-\frac{7141}{125}a+\frac{2493}{625}$, $\frac{71}{5000}a^{11}-\frac{8}{625}a^{10}+\frac{29}{500}a^{9}-\frac{4}{125}a^{8}+\frac{349}{500}a^{7}-\frac{74}{125}a^{6}+\frac{7}{250}a^{5}+\frac{111}{125}a^{4}-\frac{571}{125}a^{3}+\frac{344}{125}a^{2}-\frac{2597}{625}a+\frac{123}{625}$, $\frac{289}{2500}a^{11}+\frac{1}{50}a^{10}+\frac{58}{125}a^{9}+\frac{2}{25}a^{8}+\frac{723}{125}a^{7}+\frac{49}{50}a^{6}+\frac{3}{125}a^{5}-\frac{3}{25}a^{4}-\frac{4088}{125}a^{3}-\frac{158}{25}a^{2}-\frac{31146}{625}a-\frac{241}{25}$, $\frac{169}{2500}a^{11}-\frac{1}{1250}a^{10}+\frac{33}{125}a^{9}+\frac{1}{125}a^{8}+\frac{423}{125}a^{7}-\frac{13}{250}a^{6}-\frac{22}{125}a^{5}+\frac{41}{125}a^{4}-\frac{2158}{125}a^{3}-\frac{346}{125}a^{2}-\frac{15266}{625}a-\frac{2697}{625}$
|
| |
| Regulator: | \( 189850.656499 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 189850.656499 \cdot 1}{2\cdot\sqrt{1717986918400000000}}\cr\approx \mathstrut & 1.80597459783 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2:S_3$ (as 12T62):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $C_4^2:S_3$ |
| Character table for $C_4^2:S_3$ |
Intermediate fields
| 3.1.200.1, 6.2.10240000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.11a1.9 | $x^{4} + 4 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ |
| 2.1.8.31a1.34 | $x^{8} + 8 x^{6} + 16 x^{5} + 18$ | $8$ | $1$ | $31$ | $C_4\wr C_2$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ | |
|
\(5\)
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |