Normalized defining polynomial
\( x^{12} - 6 x^{11} + 6 x^{10} + 10 x^{9} + 13 x^{8} - 8 x^{7} - 252 x^{6} + 40 x^{5} - 29 x^{4} + 614 x^{3} + 318 x^{2} - 602 x - 193 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1607222233084985344=2^{18}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{1139583269476} a^{11} - \frac{89471796291}{1139583269476} a^{10} - \frac{68353899445}{569791634738} a^{9} - \frac{69974598817}{569791634738} a^{8} - \frac{51358566808}{284895817369} a^{7} + \frac{50391590797}{284895817369} a^{6} - \frac{5027641562}{284895817369} a^{5} - \frac{135980630437}{569791634738} a^{4} - \frac{76646071925}{1139583269476} a^{3} - \frac{417560762421}{1139583269476} a^{2} - \frac{80890703471}{569791634738} a - \frac{88073099292}{284895817369}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34102.2532745 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_5$ (as 12T76):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $C_2\times A_5$ |
| Character table for $C_2\times A_5$ |
Intermediate fields
| 6.2.8340544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.48 | $x^{12} - 4 x^{11} - 4 x^{10} + 8 x^{9} - 4 x^{8} - 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{2} + 8$ | $4$ | $3$ | $18$ | $A_4\times C_2$ | $[2, 2]^{6}$ |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.10.9.1 | $x^{10} - 19$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |