Properties

Label 12.4.128000000000000000.7
Degree $12$
Signature $[4, 4]$
Discriminant $2^{22}\cdot 5^{15}$
Root discriminant $26.64$
Ramified primes $2, 5$
Class number $1$
Class group Trivial
Galois group $A_5:C_4$ (as 12T124)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![125, 0, -100, 0, 0, 0, -50, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 50*x^6 - 100*x^2 + 125)
 
gp: K = bnfinit(x^12 - 50*x^6 - 100*x^2 + 125, 1)
 

Normalized defining polynomial

\( x^{12} - 50 x^{6} - 100 x^{2} + 125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(128000000000000000=2^{22}\cdot 5^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{10} a^{6} - \frac{1}{2}$, $\frac{1}{20} a^{7} - \frac{1}{20} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{40} a^{8} + \frac{1}{40} a^{6} + \frac{1}{4} a^{4} + \frac{1}{8} a^{2} + \frac{3}{8}$, $\frac{1}{40} a^{9} - \frac{1}{40} a^{7} - \frac{1}{20} a^{6} - \frac{1}{20} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{400} a^{10} - \frac{1}{80} a^{9} - \frac{1}{80} a^{7} + \frac{1}{80} a^{6} + \frac{3}{40} a^{5} + \frac{3}{16} a^{4} + \frac{7}{16} a^{3} + \frac{1}{8} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{400} a^{11} - \frac{1}{80} a^{9} - \frac{1}{80} a^{8} + \frac{3}{80} a^{6} + \frac{1}{16} a^{5} + \frac{3}{8} a^{4} - \frac{7}{16} a^{3} + \frac{7}{16} a^{2} + \frac{1}{8} a + \frac{1}{16}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 55857.2538522 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_5:C_4$ (as 12T124):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 240
The 14 conjugacy class representatives for $A_5:C_4$
Character table for $A_5:C_4$

Intermediate fields

6.2.20000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.8$x^{4} + 2 x^{3} + 2$$4$$1$$6$$D_{4}$$[2, 2]^{2}$
2.8.16.15$x^{8} + 4 x^{6} + 4 x^{5} + 2 x^{4} + 12 x^{2} + 8 x + 28$$4$$2$$16$$C_2^2:C_4$$[2, 2, 3]^{2}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.5.7.1$x^{5} + 15 x^{3} + 5$$5$$1$$7$$F_5$$[7/4]_{4}$
5.5.7.1$x^{5} + 15 x^{3} + 5$$5$$1$$7$$F_5$$[7/4]_{4}$