Normalized defining polynomial
\( x^{12} + 68x^{6} - 663x^{4} - 272x^{2} + 34 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1123021498208518144\) \(\medspace = 2^{15}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{37/12}17^{11/12}\approx 113.78560715460762$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{6195916}a^{10}+\frac{174131}{1548979}a^{8}+\frac{812839}{6195916}a^{6}-\frac{1}{2}a^{5}-\frac{586157}{1548979}a^{4}-\frac{1331507}{3097958}a^{2}-\frac{94609}{1548979}$, $\frac{1}{12391832}a^{11}-\frac{1}{12391832}a^{10}-\frac{852455}{12391832}a^{9}+\frac{852455}{12391832}a^{8}-\frac{2285119}{12391832}a^{7}+\frac{2285119}{12391832}a^{6}+\frac{2302309}{12391832}a^{5}-\frac{2302309}{12391832}a^{4}+\frac{1766451}{6195916}a^{3}-\frac{1766451}{6195916}a^{2}-\frac{1738197}{6195916}a+\frac{1738197}{6195916}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{39422}{1548979}a^{11}+\frac{54387}{6195916}a^{10}+\frac{22559}{6195916}a^{9}+\frac{5091}{1548979}a^{8}+\frac{10485}{1548979}a^{7}+\frac{14033}{6195916}a^{6}+\frac{10744383}{6195916}a^{5}+\frac{1981059}{3097958}a^{4}-\frac{25618826}{1548979}a^{3}-\frac{17392749}{3097958}a^{2}-\frac{27307129}{3097958}a-\frac{4438382}{1548979}$, $\frac{39422}{1548979}a^{11}-\frac{54387}{6195916}a^{10}+\frac{22559}{6195916}a^{9}-\frac{5091}{1548979}a^{8}+\frac{10485}{1548979}a^{7}-\frac{14033}{6195916}a^{6}+\frac{10744383}{6195916}a^{5}-\frac{1981059}{3097958}a^{4}-\frac{25618826}{1548979}a^{3}+\frac{17392749}{3097958}a^{2}-\frac{27307129}{3097958}a+\frac{4438382}{1548979}$, $\frac{488511}{12391832}a^{11}-\frac{34877}{12391832}a^{10}+\frac{65771}{12391832}a^{9}-\frac{29891}{12391832}a^{8}+\frac{26079}{12391832}a^{7}+\frac{27855}{12391832}a^{6}+\frac{32991411}{12391832}a^{5}-\frac{1657591}{12391832}a^{4}-\frac{160354339}{6195916}a^{3}+\frac{9873093}{6195916}a^{2}-\frac{83397439}{6195916}a+\frac{5352583}{6195916}$, $\frac{488511}{12391832}a^{11}+\frac{34877}{12391832}a^{10}+\frac{65771}{12391832}a^{9}+\frac{29891}{12391832}a^{8}+\frac{26079}{12391832}a^{7}-\frac{27855}{12391832}a^{6}+\frac{32991411}{12391832}a^{5}+\frac{1657591}{12391832}a^{4}-\frac{160354339}{6195916}a^{3}-\frac{9873093}{6195916}a^{2}-\frac{83397439}{6195916}a-\frac{5352583}{6195916}$, $\frac{143651}{12391832}a^{11}-\frac{7817}{12391832}a^{10}+\frac{70619}{12391832}a^{9}-\frac{66923}{12391832}a^{8}+\frac{211}{12391832}a^{7}-\frac{50605}{12391832}a^{6}+\frac{9581827}{12391832}a^{5}-\frac{1111431}{12391832}a^{4}-\frac{44658591}{6195916}a^{3}-\frac{3846619}{6195916}a^{2}-\frac{35497943}{6195916}a+\frac{2940119}{6195916}$, $\frac{584075}{12391832}a^{11}+\frac{97123}{12391832}a^{10}-\frac{40281}{12391832}a^{9}-\frac{59415}{12391832}a^{8}-\frac{26617}{12391832}a^{7}+\frac{98483}{12391832}a^{6}+\frac{40067443}{12391832}a^{5}+\frac{5842441}{12391832}a^{4}-\frac{196137891}{6195916}a^{3}-\frac{32873147}{6195916}a^{2}-\frac{61359839}{6195916}a-\frac{1881937}{6195916}$, $\frac{871377}{12391832}a^{11}-\frac{314671}{12391832}a^{10}+\frac{100957}{12391832}a^{9}-\frac{22041}{12391832}a^{8}-\frac{26195}{12391832}a^{7}-\frac{154615}{12391832}a^{6}+\frac{59231097}{12391832}a^{5}-\frac{21690913}{12391832}a^{4}-\frac{285455073}{6195916}a^{3}+\frac{102444143}{6195916}a^{2}-\frac{157139389}{6195916}a+\frac{49780825}{6195916}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 96240.6144719 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 96240.6144719 \cdot 2}{2\cdot\sqrt{1123021498208518144}}\cr\approx \mathstrut & 2.26466416583 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.4.11.12 | $x^{4} + 26$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |