Properties

Label 12.2.797...000.1
Degree $12$
Signature $[2, 5]$
Discriminant $-7.972\times 10^{21}$
Root discriminant \(66.85\)
Ramified primes $2,5,7,17$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $D_{12}$ (as 12T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885)
 
gp: K = bnfinit(y^12 - y^11 + 27*y^10 - 10*y^9 + 129*y^8 - 987*y^7 + 3068*y^6 - 13047*y^5 + 24529*y^4 - 70220*y^3 + 105861*y^2 - 72135*y + 17885, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885)
 

\( x^{12} - x^{11} + 27 x^{10} - 10 x^{9} + 129 x^{8} - 987 x^{7} + 3068 x^{6} - 13047 x^{5} + 24529 x^{4} + \cdots + 17885 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-7972425761140316000000\) \(\medspace = -\,2^{8}\cdot 5^{6}\cdot 7^{5}\cdot 17^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(66.85\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}5^{1/2}7^{1/2}17^{3/4}\approx 78.62440592271739$
Ramified primes:   \(2\), \(5\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-119}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7}a^{6}+\frac{2}{7}a^{5}-\frac{3}{7}a^{4}+\frac{3}{7}a^{3}-\frac{3}{7}a^{2}$, $\frac{1}{35}a^{7}+\frac{2}{35}a^{6}+\frac{4}{35}a^{5}+\frac{17}{35}a^{4}-\frac{2}{7}a^{3}-\frac{2}{5}a^{2}$, $\frac{1}{175}a^{8}-\frac{1}{35}a^{6}-\frac{1}{175}a^{5}-\frac{29}{175}a^{4}-\frac{79}{175}a^{3}-\frac{62}{175}a^{2}-\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{350}a^{9}+\frac{9}{350}a^{6}+\frac{83}{175}a^{5}+\frac{3}{175}a^{4}+\frac{9}{50}a^{3}-\frac{2}{5}a^{2}-\frac{1}{5}a-\frac{1}{2}$, $\frac{1}{46550}a^{10}-\frac{6}{23275}a^{9}-\frac{24}{23275}a^{8}+\frac{11}{2450}a^{7}+\frac{824}{23275}a^{6}+\frac{7381}{23275}a^{5}+\frac{5083}{46550}a^{4}-\frac{10902}{23275}a^{3}+\frac{1374}{3325}a^{2}+\frac{59}{266}a+\frac{34}{95}$, $\frac{1}{157097957676100}a^{11}-\frac{70643429}{78548978838050}a^{10}-\frac{88461860943}{157097957676100}a^{9}-\frac{202427339977}{157097957676100}a^{8}-\frac{283340387993}{78548978838050}a^{7}-\frac{9525849700889}{157097957676100}a^{6}+\frac{48186586227243}{157097957676100}a^{5}+\frac{5107847946263}{11221282691150}a^{4}-\frac{2691398885073}{31419591535220}a^{3}-\frac{3787771192599}{22442565382300}a^{2}-\frac{622686379221}{2244256538230}a+\frac{139727417691}{641216153780}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $5$

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{16957526767}{78548978838050}a^{11}+\frac{85907513}{15709795767610}a^{10}+\frac{64930333751}{11221282691150}a^{9}+\frac{290311960979}{78548978838050}a^{8}+\frac{48790877753}{1603040384450}a^{7}-\frac{2901502891479}{15709795767610}a^{6}+\frac{36673177629657}{78548978838050}a^{5}-\frac{180975869069867}{78548978838050}a^{4}+\frac{228603036102697}{78548978838050}a^{3}-\frac{134186765774311}{11221282691150}a^{2}+\frac{24501581382989}{2244256538230}a-\frac{775001096351}{320608076890}$, $\frac{121503}{98847700}a^{11}-\frac{1854}{3530275}a^{10}+\frac{3238181}{98847700}a^{9}+\frac{657953}{98847700}a^{8}+\frac{785779}{4942385}a^{7}-\frac{3165947}{2824220}a^{6}+\frac{307710597}{98847700}a^{5}-\frac{349793991}{24711925}a^{4}+\frac{2126067019}{98847700}a^{3}-\frac{1024016121}{14121100}a^{2}+\frac{61110019}{706055}a-\frac{11548601}{403460}$, $\frac{26806789}{118118765170}a^{11}-\frac{470942604}{2067078390475}a^{10}+\frac{4672913593}{826831356190}a^{9}-\frac{8416146653}{4134156780950}a^{8}+\frac{35828749214}{2067078390475}a^{7}-\frac{954206142793}{4134156780950}a^{6}+\frac{537931247673}{826831356190}a^{5}-\frac{5462798981296}{2067078390475}a^{4}+\frac{16996548768467}{4134156780950}a^{3}-\frac{6944743047457}{590593825850}a^{2}+\frac{1130790633778}{59059382585}a-\frac{129161829397}{16874109310}$, $\frac{3048951049181}{157097957676100}a^{11}-\frac{439961429507}{78548978838050}a^{10}+\frac{81484228819163}{157097957676100}a^{9}+\frac{27322556130819}{157097957676100}a^{8}+\frac{40678199749539}{15709795767610}a^{7}-\frac{27\!\cdots\!31}{157097957676100}a^{6}+\frac{73\!\cdots\!67}{157097957676100}a^{5}-\frac{17\!\cdots\!07}{78548978838050}a^{4}+\frac{71\!\cdots\!07}{22442565382300}a^{3}-\frac{10\!\cdots\!87}{897702615292}a^{2}+\frac{398433981253291}{320608076890}a-\frac{57951046818723}{128243230756}$, $\frac{204599557381}{157097957676100}a^{11}+\frac{12302025497}{15709795767610}a^{10}+\frac{5878652704143}{157097957676100}a^{9}+\frac{1476658871703}{31419591535220}a^{8}+\frac{24240704568223}{78548978838050}a^{7}-\frac{134105549171547}{157097957676100}a^{6}+\frac{131088836977111}{31419591535220}a^{5}-\frac{994683239482813}{78548978838050}a^{4}+\frac{110440576824567}{4488513076460}a^{3}-\frac{15\!\cdots\!51}{22442565382300}a^{2}+\frac{24435142464733}{320608076890}a-\frac{15823012430471}{641216153780}$, $\frac{10\!\cdots\!81}{157097957676100}a^{11}+\frac{578061798402106}{39274489419025}a^{10}+\frac{27\!\cdots\!89}{157097957676100}a^{9}+\frac{23\!\cdots\!11}{157097957676100}a^{8}+\frac{37\!\cdots\!93}{39274489419025}a^{7}-\frac{83\!\cdots\!69}{157097957676100}a^{6}+\frac{20\!\cdots\!79}{157097957676100}a^{5}-\frac{26\!\cdots\!63}{39274489419025}a^{4}+\frac{11\!\cdots\!99}{157097957676100}a^{3}-\frac{76\!\cdots\!27}{22442565382300}a^{2}+\frac{27\!\cdots\!97}{1122128269115}a-\frac{22\!\cdots\!17}{641216153780}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3969507.226057836 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 3969507.226057836 \cdot 4}{2\cdot\sqrt{7972425761140316000000}}\cr\approx \mathstrut & 3.48281722548910 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 + 27*x^10 - 10*x^9 + 129*x^8 - 987*x^7 + 3068*x^6 - 13047*x^5 + 24529*x^4 - 70220*x^3 + 105861*x^2 - 72135*x + 17885);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{12}$ (as 12T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 9 conjugacy class representatives for $D_{12}$
Character table for $D_{12}$

Intermediate fields

\(\Q(\sqrt{85}) \), 3.1.140.1, 4.2.859775.1, 6.2.481474000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 12 sibling: deg 12
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ R R ${\href{/padicField/11.12.0.1}{12} }$ ${\href{/padicField/13.12.0.1}{12} }$ R ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{5}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.12.0.1}{12} }$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.2.0.1}{2} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(5\) Copy content Toggle raw display 5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} + 21$$2$$1$$1$$C_2$$[\ ]_{2}$
\(17\) Copy content Toggle raw display 17.12.9.3$x^{12} + 289 x^{4} - 68782$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.35.2t1.a.a$1$ $ 5 \cdot 7 $ \(\Q(\sqrt{-35}) \) $C_2$ (as 2T1) $1$ $-1$
1.119.2t1.a.a$1$ $ 7 \cdot 17 $ \(\Q(\sqrt{-119}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.85.2t1.a.a$1$ $ 5 \cdot 17 $ \(\Q(\sqrt{85}) \) $C_2$ (as 2T1) $1$ $1$
* 2.140.3t2.a.a$2$ $ 2^{2} \cdot 5 \cdot 7 $ 3.1.140.1 $S_3$ (as 3T2) $1$ $0$
* 2.40460.6t3.c.a$2$ $ 2^{2} \cdot 5 \cdot 7 \cdot 17^{2}$ 6.2.481474000.3 $D_{6}$ (as 6T3) $1$ $0$
* 2.10115.4t3.f.a$2$ $ 5 \cdot 7 \cdot 17^{2}$ 4.2.859775.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.40460.12t12.a.a$2$ $ 2^{2} \cdot 5 \cdot 7 \cdot 17^{2}$ 12.2.7972425761140316000000.1 $D_{12}$ (as 12T12) $1$ $0$
* 2.40460.12t12.a.b$2$ $ 2^{2} \cdot 5 \cdot 7 \cdot 17^{2}$ 12.2.7972425761140316000000.1 $D_{12}$ (as 12T12) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.