Normalized defining polynomial
\( x^{12} - x^{11} + 27 x^{10} - 10 x^{9} + 129 x^{8} - 987 x^{7} + 3068 x^{6} - 13047 x^{5} + 24529 x^{4} + \cdots + 17885 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-7972425761140316000000\) \(\medspace = -\,2^{8}\cdot 5^{6}\cdot 7^{5}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(66.85\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}5^{1/2}7^{1/2}17^{3/4}\approx 78.62440592271739$ | ||
Ramified primes: | \(2\), \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-119}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7}a^{6}+\frac{2}{7}a^{5}-\frac{3}{7}a^{4}+\frac{3}{7}a^{3}-\frac{3}{7}a^{2}$, $\frac{1}{35}a^{7}+\frac{2}{35}a^{6}+\frac{4}{35}a^{5}+\frac{17}{35}a^{4}-\frac{2}{7}a^{3}-\frac{2}{5}a^{2}$, $\frac{1}{175}a^{8}-\frac{1}{35}a^{6}-\frac{1}{175}a^{5}-\frac{29}{175}a^{4}-\frac{79}{175}a^{3}-\frac{62}{175}a^{2}-\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{350}a^{9}+\frac{9}{350}a^{6}+\frac{83}{175}a^{5}+\frac{3}{175}a^{4}+\frac{9}{50}a^{3}-\frac{2}{5}a^{2}-\frac{1}{5}a-\frac{1}{2}$, $\frac{1}{46550}a^{10}-\frac{6}{23275}a^{9}-\frac{24}{23275}a^{8}+\frac{11}{2450}a^{7}+\frac{824}{23275}a^{6}+\frac{7381}{23275}a^{5}+\frac{5083}{46550}a^{4}-\frac{10902}{23275}a^{3}+\frac{1374}{3325}a^{2}+\frac{59}{266}a+\frac{34}{95}$, $\frac{1}{157097957676100}a^{11}-\frac{70643429}{78548978838050}a^{10}-\frac{88461860943}{157097957676100}a^{9}-\frac{202427339977}{157097957676100}a^{8}-\frac{283340387993}{78548978838050}a^{7}-\frac{9525849700889}{157097957676100}a^{6}+\frac{48186586227243}{157097957676100}a^{5}+\frac{5107847946263}{11221282691150}a^{4}-\frac{2691398885073}{31419591535220}a^{3}-\frac{3787771192599}{22442565382300}a^{2}-\frac{622686379221}{2244256538230}a+\frac{139727417691}{641216153780}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $5$ |
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{16957526767}{78548978838050}a^{11}+\frac{85907513}{15709795767610}a^{10}+\frac{64930333751}{11221282691150}a^{9}+\frac{290311960979}{78548978838050}a^{8}+\frac{48790877753}{1603040384450}a^{7}-\frac{2901502891479}{15709795767610}a^{6}+\frac{36673177629657}{78548978838050}a^{5}-\frac{180975869069867}{78548978838050}a^{4}+\frac{228603036102697}{78548978838050}a^{3}-\frac{134186765774311}{11221282691150}a^{2}+\frac{24501581382989}{2244256538230}a-\frac{775001096351}{320608076890}$, $\frac{121503}{98847700}a^{11}-\frac{1854}{3530275}a^{10}+\frac{3238181}{98847700}a^{9}+\frac{657953}{98847700}a^{8}+\frac{785779}{4942385}a^{7}-\frac{3165947}{2824220}a^{6}+\frac{307710597}{98847700}a^{5}-\frac{349793991}{24711925}a^{4}+\frac{2126067019}{98847700}a^{3}-\frac{1024016121}{14121100}a^{2}+\frac{61110019}{706055}a-\frac{11548601}{403460}$, $\frac{26806789}{118118765170}a^{11}-\frac{470942604}{2067078390475}a^{10}+\frac{4672913593}{826831356190}a^{9}-\frac{8416146653}{4134156780950}a^{8}+\frac{35828749214}{2067078390475}a^{7}-\frac{954206142793}{4134156780950}a^{6}+\frac{537931247673}{826831356190}a^{5}-\frac{5462798981296}{2067078390475}a^{4}+\frac{16996548768467}{4134156780950}a^{3}-\frac{6944743047457}{590593825850}a^{2}+\frac{1130790633778}{59059382585}a-\frac{129161829397}{16874109310}$, $\frac{3048951049181}{157097957676100}a^{11}-\frac{439961429507}{78548978838050}a^{10}+\frac{81484228819163}{157097957676100}a^{9}+\frac{27322556130819}{157097957676100}a^{8}+\frac{40678199749539}{15709795767610}a^{7}-\frac{27\!\cdots\!31}{157097957676100}a^{6}+\frac{73\!\cdots\!67}{157097957676100}a^{5}-\frac{17\!\cdots\!07}{78548978838050}a^{4}+\frac{71\!\cdots\!07}{22442565382300}a^{3}-\frac{10\!\cdots\!87}{897702615292}a^{2}+\frac{398433981253291}{320608076890}a-\frac{57951046818723}{128243230756}$, $\frac{204599557381}{157097957676100}a^{11}+\frac{12302025497}{15709795767610}a^{10}+\frac{5878652704143}{157097957676100}a^{9}+\frac{1476658871703}{31419591535220}a^{8}+\frac{24240704568223}{78548978838050}a^{7}-\frac{134105549171547}{157097957676100}a^{6}+\frac{131088836977111}{31419591535220}a^{5}-\frac{994683239482813}{78548978838050}a^{4}+\frac{110440576824567}{4488513076460}a^{3}-\frac{15\!\cdots\!51}{22442565382300}a^{2}+\frac{24435142464733}{320608076890}a-\frac{15823012430471}{641216153780}$, $\frac{10\!\cdots\!81}{157097957676100}a^{11}+\frac{578061798402106}{39274489419025}a^{10}+\frac{27\!\cdots\!89}{157097957676100}a^{9}+\frac{23\!\cdots\!11}{157097957676100}a^{8}+\frac{37\!\cdots\!93}{39274489419025}a^{7}-\frac{83\!\cdots\!69}{157097957676100}a^{6}+\frac{20\!\cdots\!79}{157097957676100}a^{5}-\frac{26\!\cdots\!63}{39274489419025}a^{4}+\frac{11\!\cdots\!99}{157097957676100}a^{3}-\frac{76\!\cdots\!27}{22442565382300}a^{2}+\frac{27\!\cdots\!97}{1122128269115}a-\frac{22\!\cdots\!17}{641216153780}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3969507.226057836 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 3969507.226057836 \cdot 4}{2\cdot\sqrt{7972425761140316000000}}\cr\approx \mathstrut & 3.48281722548910 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 24 |
The 9 conjugacy class representatives for $D_{12}$ |
Character table for $D_{12}$ |
Intermediate fields
\(\Q(\sqrt{85}) \), 3.1.140.1, 4.2.859775.1, 6.2.481474000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 12 sibling: | deg 12 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.12.0.1}{12} }$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{5}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(5\) | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(7\) | $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.1 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(17\) | 17.12.9.3 | $x^{12} + 289 x^{4} - 68782$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.35.2t1.a.a | $1$ | $ 5 \cdot 7 $ | \(\Q(\sqrt{-35}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.119.2t1.a.a | $1$ | $ 7 \cdot 17 $ | \(\Q(\sqrt{-119}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.85.2t1.a.a | $1$ | $ 5 \cdot 17 $ | \(\Q(\sqrt{85}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.140.3t2.a.a | $2$ | $ 2^{2} \cdot 5 \cdot 7 $ | 3.1.140.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.40460.6t3.c.a | $2$ | $ 2^{2} \cdot 5 \cdot 7 \cdot 17^{2}$ | 6.2.481474000.3 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.10115.4t3.f.a | $2$ | $ 5 \cdot 7 \cdot 17^{2}$ | 4.2.859775.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.40460.12t12.a.a | $2$ | $ 2^{2} \cdot 5 \cdot 7 \cdot 17^{2}$ | 12.2.7972425761140316000000.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |
* | 2.40460.12t12.a.b | $2$ | $ 2^{2} \cdot 5 \cdot 7 \cdot 17^{2}$ | 12.2.7972425761140316000000.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |