Normalized defining polynomial
\( x^{12} - 15 x^{8} - 36 x^{7} - 6 x^{6} + 18 x^{4} - 12 x^{3} + 36 x^{2} + 6 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-77998046721343488=-\,2^{26}\cdot 3^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1738} a^{10} - \frac{51}{869} a^{9} - \frac{765}{1738} a^{8} + \frac{334}{869} a^{7} - \frac{46}{869} a^{6} - \frac{369}{869} a^{5} - \frac{406}{869} a^{4} + \frac{263}{869} a^{3} + \frac{294}{869} a^{2} + \frac{194}{869} a - \frac{387}{869}$, $\frac{1}{497068} a^{11} - \frac{63}{497068} a^{10} - \frac{220255}{497068} a^{9} - \frac{36119}{497068} a^{8} - \frac{7589}{22594} a^{7} - \frac{42137}{248534} a^{6} + \frac{22582}{124267} a^{5} + \frac{56955}{124267} a^{4} + \frac{102665}{248534} a^{3} - \frac{6761}{22594} a^{2} - \frac{97101}{248534} a - \frac{101993}{248534}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28739.8558417 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $D_6:D_6$ |
| Character table for $D_6:D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.2.6912.1, 6.2.20155392.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.5 | $x^{4} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ |
| 2.8.18.54 | $x^{8} + 6 x^{6} + 4 x^{3} + 6$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $3$ | 3.12.19.26 | $x^{12} + 6 x^{11} - 9 x^{10} + 12 x^{9} + 12 x^{8} - 9 x^{7} + 3 x^{6} - 9 x^{5} + 9 x^{4} + 6 x^{3} - 9 x^{2} - 9 x + 6$ | $12$ | $1$ | $19$ | 12T42 | $[3/2, 2]_{4}^{2}$ |