Normalized defining polynomial
\( x^{12} - 3 x^{11} - 15 x^{10} + 55 x^{9} + 19 x^{8} - 147 x^{7} - 57 x^{6} + 181 x^{5} + 104 x^{4} + \cdots - 16 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-70188843638032384\) \(\medspace = -\,2^{11}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(25.34\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}17^{11/12}\approx 53.69965587306223$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}+\frac{1}{8}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}+\frac{1}{8}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{1}{16}a^{6}-\frac{1}{16}a^{5}-\frac{1}{8}a^{4}-\frac{3}{8}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{67168}a^{11}-\frac{91}{33584}a^{10}-\frac{1021}{67168}a^{9}-\frac{949}{33584}a^{8}+\frac{3921}{67168}a^{7}+\frac{1629}{33584}a^{6}-\frac{12311}{67168}a^{5}+\frac{2049}{33584}a^{4}+\frac{2705}{33584}a^{3}-\frac{7019}{16792}a^{2}-\frac{378}{2099}a+\frac{985}{4198}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{32}a^{11}-\frac{1}{8}a^{10}-\frac{11}{32}a^{9}+\frac{33}{16}a^{8}-\frac{47}{32}a^{7}-\frac{25}{8}a^{6}+\frac{43}{32}a^{5}+\frac{69}{16}a^{4}-\frac{17}{16}a^{3}-\frac{1}{8}a^{2}-3a+\frac{1}{2}$, $\frac{507}{33584}a^{11}-\frac{1029}{8396}a^{10}+\frac{2905}{33584}a^{9}+\frac{14457}{8396}a^{8}-\frac{169825}{33584}a^{7}+\frac{4447}{4198}a^{6}+\frac{332391}{33584}a^{5}-\frac{15783}{4198}a^{4}-\frac{190221}{16792}a^{3}+\frac{10288}{2099}a^{2}+\frac{2924}{2099}a+\frac{6130}{2099}$, $\frac{15}{67168}a^{11}-\frac{433}{4198}a^{10}+\frac{22467}{67168}a^{9}+\frac{48735}{33584}a^{8}-\frac{411361}{67168}a^{7}-\frac{713}{8396}a^{6}+\frac{1078933}{67168}a^{5}-\frac{28037}{33584}a^{4}-\frac{677283}{33584}a^{3}-\frac{33919}{16792}a^{2}+\frac{36937}{4198}a+\frac{27369}{4198}$, $\frac{881}{16792}a^{11}-\frac{7933}{33584}a^{10}-\frac{16951}{33584}a^{9}+\frac{32917}{8396}a^{8}-\frac{67721}{16792}a^{7}-\frac{218465}{33584}a^{6}+\frac{316033}{33584}a^{5}+\frac{102909}{16792}a^{4}-\frac{172737}{16792}a^{3}-\frac{85}{4198}a^{2}+\frac{793}{2099}a+\frac{3895}{2099}$, $\frac{627}{67168}a^{11}-\frac{24}{2099}a^{10}-\frac{14665}{67168}a^{9}+\frac{13687}{33584}a^{8}+\frac{90795}{67168}a^{7}-\frac{7136}{2099}a^{6}-\frac{40855}{67168}a^{5}+\frac{151263}{33584}a^{4}+\frac{4241}{33584}a^{3}-\frac{30795}{16792}a^{2}-\frac{5935}{4198}a+\frac{489}{4198}$, $\frac{13545}{67168}a^{11}-\frac{23571}{33584}a^{10}-\frac{185945}{67168}a^{9}+\frac{424069}{33584}a^{8}-\frac{70319}{67168}a^{7}-\frac{1108155}{33584}a^{6}+\frac{201965}{67168}a^{5}+\frac{1503611}{33584}a^{4}+\frac{49457}{33584}a^{3}-\frac{344485}{16792}a^{2}-\frac{53573}{4198}a+\frac{4779}{4198}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7284.49812494 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 7284.49812494 \cdot 2}{2\cdot\sqrt{70188843638032384}}\cr\approx \mathstrut & 1.07702286958 \end{aligned}\]
Galois group
$D_6\wr C_2$ (as 12T125):
A solvable group of order 288 |
The 27 conjugacy class representatives for $D_6\wr C_2$ |
Character table for $D_6\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.2.39304.1, 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.35094421819016192.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.3.0.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
2.3.0.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
2.4.8.2 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |