sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544)
gp: K = bnfinit(y^12 - 34*y^9 - 34*y^8 - 34*y^7 + 187*y^6 + 170*y^5 - 119*y^4 - 986*y^3 - 1071*y^2 - 272*y + 544, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544)
x12−34x9−34x8−34x7+187x6+170x5−119x4−986x3−1071x2−272x+544
sage: K.defining_polynomial()
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree: | | 12 |
|
Signature: | | [2,5] |
|
Discriminant: | |
−4492085992834072576
=−217⋅1711
|
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
|
Root discriminant: | | 35.84 | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
|
Galois root discriminant: | | 219/81711/12≈69.63983780733449
|
Ramified primes: | |
2, 17
|
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
|
Discriminant root field: | | Q(−34)
|
#Aut(K/Q): | | 2 |
|
This field is not Galois over Q. |
This is not a CM field. |
1, a, a2, a3, a4, a5, a6, a7, a8, 21a9−21a7−21a5−21a, 41a10−41a9+41a8+41a7+41a6+41a5−21a4+41a2+41a, 3100844408279321a11+3100844408279328461517356005a10+31008444082793221388349982331a9+31008444082793296241932080819a8−310084440827932149974422985685a7+310084440827932111805106618203a6+77521110206983128913778930a5−7752111020698333949828701531a4−31008444082793238296180102719a3−310084440827932130707787772401a2+15504222041396613305159320009a−7752111020698310472596451050
C2, which has order 2
sage: K.class_group().invariants()
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank: | | 6
|
|
Torsion generator: | |
−1
(order 2)
| sage: UK.torsion_generator()
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
|
Fundamental units: | |
3100844408279321013589437039a11−155042220413966407980810183a10−1550422204139661181972036279a9−775211102069837278232094246a8−775211102069833279868931507a7+7752111020698317745959202214a6+310084440827932147228156557051a5+15504222041396638606538085329a4−310084440827932529809053356661a3−77521110206983195178206318526a2−31008444082793269749024987583a+7752111020698397327658484523, 155042220413966977844997055a11−77521110206983772136018540a10+77521110206983431849612485a9−7752111020698315872847819489a8+775211102069838340629599628a7−775211102069836731043184410a6+155042220413966168366505496319a5−7752111020698360081548787344a4−155042220413966106205820865321a3−77521110206983263628757986807a2−15504222041396646457132913899a+7752111020698394447317725691, 155042220413966402248583643a11+77521110206983553289424390a10−775211102069831668016252795a9−775211102069835203290194819a8−7752111020698324792541821820a7+7752111020698326341988142920a6+15504222041396654803085923323a5+7752111020698397833205863166a4−155042220413966295725128935517a3−77521110206983320757337462127a2−155042220413966288038596773391a+77521110206983218815584980703, 155042220413966827855769499a11−77521110206983849616582179a10+775211102069831231349716206a9−7752111020698316040864505226a8+7752111020698317652003577275a7−7752111020698328911590881641a6+155042220413966257752007291725a5−77521110206983147032214737603a4+155042220413966107376922363955a3−77521110206983423207207378222a2+155042220413966426091154715817a+77521110206983100394456388937, 77521110206983104081390139a11+3100844408279321638031874059a10+310084440827932733724584443a9−31008444082793217214501792165a8−31008444082793266718902670951a7−31008444082793280016342734493a6+31008444082793286712846239273a5+155042220413966150572993780539a4−775211102069831381200297632a3−31008444082793210⋯93a2−31008444082793215⋯55a−77521110206983227655696414999, 775211102069838313046095a11−775211102069834890975096a10−7752111020698393759129895a9−77521110206983106578678180a8+77521110206983674004898686a7+775211102069831438829964031a6−775211102069837045076229003a5−7752111020698332446356747570a4−7752111020698371136293538680a3−7752111020698361342805602572a2−7752111020698323873852742892a+7752111020698340033044236529
| sage: UK.fundamental_units()
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
|
Regulator: | | 112558.113937
|
|
s→1lim(s−1)ζK(s)=(≈(≈(w⋅∣D∣2r1⋅(2π)r2⋅R⋅h2⋅449208599283407257622⋅(2π)5⋅112558.113937⋅22.08023361368
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
/* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
# self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 34*x^9 - 34*x^8 - 34*x^7 + 187*x^6 + 170*x^5 - 119*x^4 - 986*x^3 - 1071*x^2 - 272*x + 544);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
S42:D4 (as 12T260):
sage: K.galois_group(type='pari')
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
Cycle type |
R |
43 |
8,4 |
62 |
8,22 |
4,22,14 |
R |
6,4,12 |
42,22 |
8,4 |
62 |
8,4 |
12 |
4,23,12 |
6,32 |
32,23 |
32,22,12 |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
# to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for
p=7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
\\ to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for
p=7 in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
// to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for $p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
# to obtain a list of
[ei,fi] for the factorization of the ideal
pOK for
p=7 in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]