Normalized defining polynomial
\( x^{12} - 34x^{9} - 34x^{8} - 34x^{7} + 187x^{6} + 170x^{5} - 119x^{4} - 986x^{3} - 1071x^{2} - 272x + 544 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{19/8}17^{11/12}\approx 69.63983780733449$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{8}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{310084440827932}a^{11}+\frac{8461517356005}{310084440827932}a^{10}+\frac{21388349982331}{310084440827932}a^{9}+\frac{96241932080819}{310084440827932}a^{8}-\frac{149974422985685}{310084440827932}a^{7}+\frac{111805106618203}{310084440827932}a^{6}+\frac{128913778930}{77521110206983}a^{5}-\frac{33949828701531}{77521110206983}a^{4}-\frac{38296180102719}{310084440827932}a^{3}-\frac{130707787772401}{310084440827932}a^{2}+\frac{13305159320009}{155042220413966}a-\frac{10472596451050}{77521110206983}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1013589437039}{310084440827932}a^{11}-\frac{407980810183}{155042220413966}a^{10}-\frac{1181972036279}{155042220413966}a^{9}-\frac{7278232094246}{77521110206983}a^{8}-\frac{3279868931507}{77521110206983}a^{7}+\frac{17745959202214}{77521110206983}a^{6}+\frac{147228156557051}{310084440827932}a^{5}+\frac{38606538085329}{155042220413966}a^{4}-\frac{529809053356661}{310084440827932}a^{3}-\frac{195178206318526}{77521110206983}a^{2}-\frac{69749024987583}{310084440827932}a+\frac{97327658484523}{77521110206983}$, $\frac{977844997055}{155042220413966}a^{11}-\frac{772136018540}{77521110206983}a^{10}+\frac{431849612485}{77521110206983}a^{9}-\frac{15872847819489}{77521110206983}a^{8}+\frac{8340629599628}{77521110206983}a^{7}-\frac{6731043184410}{77521110206983}a^{6}+\frac{168366505496319}{155042220413966}a^{5}-\frac{60081548787344}{77521110206983}a^{4}-\frac{106205820865321}{155042220413966}a^{3}-\frac{263628757986807}{77521110206983}a^{2}-\frac{46457132913899}{155042220413966}a+\frac{94447317725691}{77521110206983}$, $\frac{402248583643}{155042220413966}a^{11}+\frac{553289424390}{77521110206983}a^{10}-\frac{1668016252795}{77521110206983}a^{9}-\frac{5203290194819}{77521110206983}a^{8}-\frac{24792541821820}{77521110206983}a^{7}+\frac{26341988142920}{77521110206983}a^{6}+\frac{54803085923323}{155042220413966}a^{5}+\frac{97833205863166}{77521110206983}a^{4}-\frac{295725128935517}{155042220413966}a^{3}-\frac{320757337462127}{77521110206983}a^{2}-\frac{288038596773391}{155042220413966}a+\frac{218815584980703}{77521110206983}$, $\frac{827855769499}{155042220413966}a^{11}-\frac{849616582179}{77521110206983}a^{10}+\frac{1231349716206}{77521110206983}a^{9}-\frac{16040864505226}{77521110206983}a^{8}+\frac{17652003577275}{77521110206983}a^{7}-\frac{28911590881641}{77521110206983}a^{6}+\frac{257752007291725}{155042220413966}a^{5}-\frac{147032214737603}{77521110206983}a^{4}+\frac{107376922363955}{155042220413966}a^{3}-\frac{423207207378222}{77521110206983}a^{2}+\frac{426091154715817}{155042220413966}a+\frac{100394456388937}{77521110206983}$, $\frac{104081390139}{77521110206983}a^{11}+\frac{1638031874059}{310084440827932}a^{10}+\frac{733724584443}{310084440827932}a^{9}-\frac{17214501792165}{310084440827932}a^{8}-\frac{66718902670951}{310084440827932}a^{7}-\frac{80016342734493}{310084440827932}a^{6}+\frac{86712846239273}{310084440827932}a^{5}+\frac{150572993780539}{155042220413966}a^{4}-\frac{1381200297632}{77521110206983}a^{3}-\frac{10\!\cdots\!93}{310084440827932}a^{2}-\frac{15\!\cdots\!55}{310084440827932}a-\frac{227655696414999}{77521110206983}$, $\frac{8313046095}{77521110206983}a^{11}-\frac{4890975096}{77521110206983}a^{10}-\frac{93759129895}{77521110206983}a^{9}-\frac{106578678180}{77521110206983}a^{8}+\frac{674004898686}{77521110206983}a^{7}+\frac{1438829964031}{77521110206983}a^{6}-\frac{7045076229003}{77521110206983}a^{5}-\frac{32446356747570}{77521110206983}a^{4}-\frac{71136293538680}{77521110206983}a^{3}-\frac{61342805602572}{77521110206983}a^{2}-\frac{23873852742892}{77521110206983}a+\frac{40033044236529}{77521110206983}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 112558.113937 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 112558.113937 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.08023361368 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.6.9.2 | $x^{6} + 4 x^{5} - 10 x^{4} + 160 x^{3} + 1212 x^{2} + 2160 x - 1048$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |