Normalized defining polynomial
\( x^{12} + 17x^{8} - 85x^{6} + 51x^{4} + 34x^{2} - 34 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{51/16}17^{11/12}\approx 122.30511559717738$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13}a^{8}-\frac{1}{13}a^{6}+\frac{4}{13}a^{4}+\frac{3}{13}a^{2}+\frac{5}{13}$, $\frac{1}{13}a^{9}-\frac{1}{13}a^{7}+\frac{4}{13}a^{5}+\frac{3}{13}a^{3}+\frac{5}{13}a$, $\frac{1}{4069}a^{10}-\frac{14}{4069}a^{8}-\frac{100}{4069}a^{6}+\frac{1628}{4069}a^{4}+\frac{421}{4069}a^{2}+\frac{103}{313}$, $\frac{1}{8138}a^{11}-\frac{1}{8138}a^{10}+\frac{23}{626}a^{9}-\frac{23}{626}a^{8}+\frac{1828}{4069}a^{7}-\frac{1828}{4069}a^{6}-\frac{1189}{8138}a^{5}+\frac{1189}{8138}a^{4}+\frac{680}{4069}a^{3}-\frac{680}{4069}a^{2}+\frac{1452}{4069}a-\frac{1452}{4069}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{584}{4069}a^{10}+\frac{588}{4069}a^{8}+\frac{10147}{4069}a^{6}-\frac{39580}{4069}a^{4}-\frac{16743}{4069}a^{2}+\frac{32341}{4069}$, $\frac{123}{4069}a^{10}+\frac{12}{313}a^{8}+\frac{2098}{4069}a^{6}-\frac{7901}{4069}a^{4}-\frac{3618}{4069}a^{2}+\frac{3189}{4069}$, $\frac{1041}{4069}a^{10}+\frac{1076}{4069}a^{8}+\frac{18596}{4069}a^{6}-\frac{69633}{4069}a^{4}-\frac{23414}{4069}a^{2}+\frac{23585}{4069}$, $\frac{121}{4069}a^{11}+\frac{123}{4069}a^{10}+\frac{184}{4069}a^{9}+\frac{12}{313}a^{8}+\frac{2298}{4069}a^{7}+\frac{2098}{4069}a^{6}-\frac{7088}{4069}a^{5}-\frac{7901}{4069}a^{4}-\frac{4460}{4069}a^{3}-\frac{3618}{4069}a^{2}+\frac{511}{4069}a+\frac{11327}{4069}$, $\frac{60}{4069}a^{11}-\frac{68}{4069}a^{10}+\frac{99}{4069}a^{9}+\frac{1}{313}a^{8}+\frac{1199}{4069}a^{7}-\frac{399}{4069}a^{6}-\frac{4358}{4069}a^{5}+\frac{7610}{4069}a^{4}+\frac{3663}{4069}a^{3}-\frac{7031}{4069}a^{2}-\frac{414}{4069}a+\frac{1909}{4069}$, $\frac{3431}{4069}a^{11}-\frac{4613}{4069}a^{10}+\frac{5176}{4069}a^{9}-\frac{5217}{4069}a^{8}+\frac{63487}{4069}a^{7}-\frac{83320}{4069}a^{6}-\frac{199198}{4069}a^{5}+\frac{300012}{4069}a^{4}-\frac{174072}{4069}a^{3}+\frac{123101}{4069}a^{2}+\frac{18049}{4069}a-\frac{68299}{4069}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 126690.654584 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 126690.654584 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.34142301241 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.4.11.15 | $x^{4} + 12 x^{2} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
2.6.6.1 | $x^{6} + 6 x^{5} + 34 x^{4} + 80 x^{3} + 204 x^{2} + 216 x + 216$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |