Normalized defining polynomial
\( x^{12} + 17x^{10} + 102x^{8} + 153x^{6} - 476x^{4} - 1496x^{2} - 544 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3}17^{11/12}\approx 107.39931174612445$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{2}a^{5}+\frac{1}{4}a^{3}$, $\frac{1}{2886104}a^{10}-\frac{236267}{2886104}a^{8}+\frac{101129}{1443052}a^{6}+\frac{51309}{222008}a^{4}-\frac{134759}{360763}a^{2}+\frac{92226}{360763}$, $\frac{1}{11544416}a^{11}-\frac{1}{5772208}a^{10}-\frac{236267}{11544416}a^{9}+\frac{236267}{5772208}a^{8}-\frac{1341923}{5772208}a^{7}+\frac{1341923}{2886104}a^{6}+\frac{273317}{888032}a^{5}+\frac{170699}{444016}a^{4}-\frac{134759}{1443052}a^{3}+\frac{134759}{721526}a^{2}+\frac{452989}{1443052}a+\frac{268537}{721526}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2901}{721526}a^{10}+\frac{39133}{721526}a^{8}+\frac{74910}{360763}a^{6}-\frac{8955}{55502}a^{4}-\frac{557357}{360763}a^{2}-\frac{193317}{360763}$, $\frac{4024}{360763}a^{10}+\frac{104957}{721526}a^{8}+\frac{370491}{721526}a^{6}-\frac{27775}{27751}a^{4}-\frac{3220173}{721526}a^{2}-\frac{500861}{360763}$, $\frac{13033}{2886104}a^{11}-\frac{2901}{721526}a^{10}+\frac{205157}{2886104}a^{9}-\frac{39133}{721526}a^{8}+\frac{507781}{1443052}a^{7}-\frac{74910}{360763}a^{6}+\frac{22101}{222008}a^{5}+\frac{8955}{55502}a^{4}-\frac{841289}{360763}a^{3}+\frac{557357}{360763}a^{2}-\frac{802384}{360763}a+\frac{193317}{360763}$, $\frac{13033}{2886104}a^{11}+\frac{2901}{721526}a^{10}+\frac{205157}{2886104}a^{9}+\frac{39133}{721526}a^{8}+\frac{507781}{1443052}a^{7}+\frac{74910}{360763}a^{6}+\frac{22101}{222008}a^{5}-\frac{8955}{55502}a^{4}-\frac{841289}{360763}a^{3}-\frac{557357}{360763}a^{2}-\frac{802384}{360763}a-\frac{193317}{360763}$, $\frac{150099}{5772208}a^{11}-\frac{277775}{2886104}a^{10}+\frac{2448571}{5772208}a^{9}-\frac{3825139}{2886104}a^{8}+\frac{6391517}{2886104}a^{7}-\frac{7873003}{1443052}a^{6}+\frac{416087}{444016}a^{5}+\frac{778133}{222008}a^{4}-\frac{22590583}{1443052}a^{3}+\frac{11817524}{360763}a^{2}-\frac{4857381}{721526}a+\frac{4754162}{360763}$, $\frac{4167}{111004}a^{11}+\frac{6577}{111004}a^{10}+\frac{80891}{111004}a^{9}+\frac{127941}{111004}a^{8}+\frac{310869}{55502}a^{7}+\frac{488983}{55502}a^{6}+\frac{2139759}{111004}a^{5}+\frac{3311845}{111004}a^{4}+\frac{778492}{27751}a^{3}+\frac{1168532}{27751}a^{2}+\frac{241796}{27751}a+\frac{338851}{27751}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 147713.135061 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 147713.135061 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.72994827284 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.280755374552129536.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.4.11.1 | $x^{4} + 8 x^{3} + 4 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |