Normalized defining polynomial
\( x^{12} - x^{11} + 4 x^{10} - 20 x^{9} - 9 x^{8} + 25 x^{7} - 14 x^{6} - 322 x^{5} + 304 x^{4} + \cdots + 608 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-4492085992834072576\) \(\medspace = -\,2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{51/16}17^{11/12}\approx 122.30511559717738$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{12}a^{9}-\frac{1}{12}a^{8}-\frac{1}{6}a^{7}-\frac{5}{12}a^{5}-\frac{1}{4}a^{4}+\frac{1}{3}a^{3}-\frac{1}{6}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{36}a^{10}-\frac{1}{12}a^{8}+\frac{1}{9}a^{7}+\frac{7}{36}a^{6}+\frac{1}{9}a^{5}+\frac{13}{36}a^{4}-\frac{1}{9}a^{3}+\frac{1}{18}a^{2}-\frac{4}{9}$, $\frac{1}{3699654022728}a^{11}-\frac{34107734423}{3699654022728}a^{10}+\frac{9912411905}{308304501894}a^{9}+\frac{7752388595}{1849827011364}a^{8}+\frac{139987159379}{3699654022728}a^{7}-\frac{577596839653}{3699654022728}a^{6}-\frac{120738858995}{1849827011364}a^{5}-\frac{43780691996}{154152250947}a^{4}-\frac{180311344985}{924913505682}a^{3}+\frac{214118093362}{462456752841}a^{2}-\frac{93569840606}{462456752841}a-\frac{64999448600}{462456752841}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{3165278492}{462456752841}a^{11}+\frac{3286874672}{462456752841}a^{10}+\frac{1829419145}{308304501894}a^{9}-\frac{84503815709}{924913505682}a^{8}-\frac{316445233579}{924913505682}a^{7}+\frac{141531810167}{924913505682}a^{6}+\frac{627020986013}{924913505682}a^{5}-\frac{768720816233}{308304501894}a^{4}-\frac{3442074281327}{924913505682}a^{3}-\frac{1335618667723}{924913505682}a^{2}-\frac{3109737735761}{462456752841}a+\frac{3194871404857}{462456752841}$, $\frac{5065724888}{462456752841}a^{11}-\frac{6821501885}{924913505682}a^{10}+\frac{7034734475}{308304501894}a^{9}-\frac{87987067525}{462456752841}a^{8}-\frac{195746403403}{924913505682}a^{7}+\frac{258229185358}{462456752841}a^{6}+\frac{200038454663}{924913505682}a^{5}-\frac{686872680133}{154152250947}a^{4}+\frac{1811993131153}{924913505682}a^{3}-\frac{4683683239315}{924913505682}a^{2}+\frac{348539876611}{462456752841}a+\frac{1020464258599}{462456752841}$, $\frac{2168212481}{1849827011364}a^{11}+\frac{958040945}{1849827011364}a^{10}+\frac{1250453663}{308304501894}a^{9}-\frac{7754235352}{462456752841}a^{8}-\frac{67929346631}{1849827011364}a^{7}-\frac{65153900531}{1849827011364}a^{6}+\frac{4417235899}{462456752841}a^{5}-\frac{64394498339}{102768167298}a^{4}+\frac{282269120761}{924913505682}a^{3}-\frac{196629527719}{924913505682}a^{2}+\frac{75971130907}{462456752841}a+\frac{323502699469}{462456752841}$, $\frac{38136705889}{924913505682}a^{11}-\frac{73778123665}{1849827011364}a^{10}+\frac{68186121871}{616609003788}a^{9}-\frac{356348417461}{462456752841}a^{8}-\frac{250458678977}{462456752841}a^{7}+\frac{3693588470305}{1849827011364}a^{6}+\frac{329833259695}{1849827011364}a^{5}-\frac{542490014085}{34256055766}a^{4}+\frac{5474428048283}{462456752841}a^{3}-\frac{13426014513290}{462456752841}a^{2}+\frac{9477355703503}{462456752841}a-\frac{226840594775}{462456752841}$, $\frac{5001581107}{1849827011364}a^{11}-\frac{5183493809}{462456752841}a^{10}+\frac{7205771243}{616609003788}a^{9}-\frac{34516067222}{462456752841}a^{8}+\frac{214264949993}{1849827011364}a^{7}+\frac{154182159425}{462456752841}a^{6}-\frac{701213524015}{1849827011364}a^{5}-\frac{154047362356}{154152250947}a^{4}+\frac{3382877811767}{924913505682}a^{3}-\frac{1222527810088}{462456752841}a^{2}+\frac{3441966062585}{462456752841}a-\frac{726227982541}{462456752841}$, $\frac{363921674}{462456752841}a^{11}-\frac{1276137433}{462456752841}a^{10}+\frac{905258057}{308304501894}a^{9}-\frac{21930301241}{924913505682}a^{8}+\frac{6813649588}{462456752841}a^{7}+\frac{19787070712}{462456752841}a^{6}-\frac{75845379325}{924913505682}a^{5}-\frac{63659557393}{308304501894}a^{4}+\frac{129341567534}{462456752841}a^{3}-\frac{227390475620}{462456752841}a^{2}+\frac{351992505214}{462456752841}a-\frac{90841478591}{462456752841}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 128565.789094 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 128565.789094 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 2.37607815811 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.4.11.15 | $x^{4} + 12 x^{2} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
2.6.6.1 | $x^{6} + 6 x^{5} + 34 x^{4} + 80 x^{3} + 204 x^{2} + 216 x + 216$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |