Normalized defining polynomial
\( x^{12} - 4 x^{11} - 42 x^{10} + 244 x^{9} + 358 x^{8} - 4976 x^{7} + 3556 x^{6} + 61336 x^{5} + \cdots + 440928 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-426534379192149555604210688\) \(\medspace = -\,2^{10}\cdot 17^{9}\cdot 37^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(165.64\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 17^{3/4}37^{2/3}\approx 185.92359263529752$ | ||
Ramified primes: | \(2\), \(17\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{24}a^{8}-\frac{1}{12}a^{7}-\frac{1}{12}a^{6}+\frac{1}{6}a^{5}-\frac{5}{24}a^{4}-\frac{1}{12}a^{3}-\frac{1}{12}a^{2}-\frac{1}{3}a$, $\frac{1}{48}a^{9}-\frac{1}{48}a^{8}+\frac{1}{24}a^{7}+\frac{1}{24}a^{6}-\frac{1}{48}a^{5}+\frac{5}{48}a^{4}-\frac{11}{24}a^{3}+\frac{1}{24}a^{2}-\frac{5}{12}a$, $\frac{1}{902059728}a^{10}+\frac{709935}{150343288}a^{9}+\frac{7140751}{902059728}a^{8}-\frac{5176577}{225514932}a^{7}-\frac{46148867}{902059728}a^{6}+\frac{94819085}{451029864}a^{5}+\frac{91206337}{902059728}a^{4}+\frac{94990837}{225514932}a^{3}+\frac{55497707}{150343288}a^{2}+\frac{103929151}{225514932}a+\frac{3628757}{18792911}$, $\frac{1}{810886747171584}a^{11}-\frac{35713}{810886747171584}a^{10}+\frac{7218027470803}{810886747171584}a^{9}+\frac{14250007609901}{810886747171584}a^{8}-\frac{3197117162881}{42678249851136}a^{7}-\frac{27500557257769}{810886747171584}a^{6}+\frac{68452214460905}{810886747171584}a^{5}-\frac{139961637359725}{810886747171584}a^{4}+\frac{63278684917673}{405443373585792}a^{3}-\frac{59371177615049}{135147791195264}a^{2}+\frac{57968860642273}{202721686792896}a-\frac{2956807523251}{8446736949704}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$, $3$ |
Class group and class number
$C_{2}\times C_{78}$, which has order $156$ (assuming GRH)
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{592}{56378733}a^{11}-\frac{1227}{37585822}a^{10}-\frac{27905}{56378733}a^{9}+\frac{39205}{18792911}a^{8}+\frac{127984}{18792911}a^{7}-\frac{1750421}{37585822}a^{6}-\frac{551123}{18792911}a^{5}+\frac{12624920}{18792911}a^{4}-\frac{48773812}{56378733}a^{3}-\frac{32021299}{18792911}a^{2}+\frac{100417142}{56378733}a-\frac{46047589}{18792911}$, $\frac{907395955}{810886747171584}a^{11}-\frac{1018103507}{810886747171584}a^{10}-\frac{32195921335}{810886747171584}a^{9}+\frac{23803354525}{270295582390528}a^{8}+\frac{3113410095}{14226083283712}a^{7}-\frac{277931693209}{270295582390528}a^{6}+\frac{494543698617}{270295582390528}a^{5}-\frac{113249637725}{270295582390528}a^{4}-\frac{22550591268245}{405443373585792}a^{3}+\frac{266522816170111}{405443373585792}a^{2}-\frac{110089573251917}{202721686792896}a-\frac{28880828648777}{8446736949704}$, $\frac{794763145}{270295582390528}a^{11}-\frac{37282945787}{810886747171584}a^{10}-\frac{69168353215}{810886747171584}a^{9}+\frac{1914995356895}{810886747171584}a^{8}-\frac{106208184475}{42678249851136}a^{7}-\frac{33444125848627}{810886747171584}a^{6}+\frac{86727788307347}{810886747171584}a^{5}+\frac{326848811870945}{810886747171584}a^{4}-\frac{845724473262125}{405443373585792}a^{3}+\frac{285118036899911}{405443373585792}a^{2}+\frac{341871670381833}{67573895597632}a-\frac{59501198198225}{8446736949704}$, $\frac{35\!\cdots\!79}{405443373585792}a^{11}-\frac{31\!\cdots\!29}{135147791195264}a^{10}-\frac{16\!\cdots\!47}{405443373585792}a^{9}+\frac{21\!\cdots\!61}{135147791195264}a^{8}+\frac{43\!\cdots\!15}{7113041641856}a^{7}-\frac{48\!\cdots\!13}{135147791195264}a^{6}-\frac{43\!\cdots\!75}{135147791195264}a^{5}+\frac{70\!\cdots\!23}{135147791195264}a^{4}-\frac{12\!\cdots\!01}{202721686792896}a^{3}-\frac{87\!\cdots\!15}{67573895597632}a^{2}+\frac{13\!\cdots\!59}{101360843396448}a-\frac{80\!\cdots\!13}{4223368474852}$, $\frac{30\!\cdots\!75}{810886747171584}a^{11}-\frac{30\!\cdots\!11}{810886747171584}a^{10}-\frac{16\!\cdots\!75}{810886747171584}a^{9}+\frac{22\!\cdots\!99}{810886747171584}a^{8}+\frac{16\!\cdots\!29}{42678249851136}a^{7}-\frac{48\!\cdots\!79}{810886747171584}a^{6}-\frac{31\!\cdots\!41}{810886747171584}a^{5}+\frac{83\!\cdots\!53}{810886747171584}a^{4}+\frac{12\!\cdots\!93}{135147791195264}a^{3}-\frac{91\!\cdots\!93}{405443373585792}a^{2}+\frac{56\!\cdots\!39}{202721686792896}a-\frac{17\!\cdots\!65}{8446736949704}$, $\frac{16\!\cdots\!93}{67573895597632}a^{11}-\frac{45\!\cdots\!23}{202721686792896}a^{10}+\frac{66\!\cdots\!09}{202721686792896}a^{9}+\frac{22\!\cdots\!65}{67573895597632}a^{8}-\frac{38\!\cdots\!53}{3556520820928}a^{7}-\frac{29\!\cdots\!13}{67573895597632}a^{6}+\frac{22\!\cdots\!25}{67573895597632}a^{5}-\frac{41\!\cdots\!97}{67573895597632}a^{4}-\frac{51\!\cdots\!83}{33786947798816}a^{3}+\frac{22\!\cdots\!11}{101360843396448}a^{2}-\frac{11\!\cdots\!89}{50680421698224}a+\frac{40\!\cdots\!37}{2111684237426}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 301266893.48755616 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 301266893.48755616 \cdot 156}{2\cdot\sqrt{426534379192149555604210688}}\cr\approx \mathstrut & 44.5685314619468 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 24 |
The 9 conjugacy class representatives for $D_{12}$ |
Character table for $D_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.1.5476.1, 4.2.19652.1, 6.2.147324047888.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 12 sibling: | deg 12 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{6}$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(37\) | 37.12.8.2 | $x^{12} + 8214 x^{6} - 1215672 x^{3} + 3748322$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.68.2t1.a.a | $1$ | $ 2^{2} \cdot 17 $ | \(\Q(\sqrt{-17}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.5476.3t2.a.a | $2$ | $ 2^{2} \cdot 37^{2}$ | 3.1.5476.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.1582564.6t3.a.a | $2$ | $ 2^{2} \cdot 17^{2} \cdot 37^{2}$ | 6.2.147324047888.4 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.1156.4t3.a.a | $2$ | $ 2^{2} \cdot 17^{2}$ | 4.2.19652.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.1582564.12t12.a.b | $2$ | $ 2^{2} \cdot 17^{2} \cdot 37^{2}$ | 12.2.426534379192149555604210688.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |
* | 2.1582564.12t12.a.a | $2$ | $ 2^{2} \cdot 17^{2} \cdot 37^{2}$ | 12.2.426534379192149555604210688.1 | $D_{12}$ (as 12T12) | $1$ | $0$ |