Properties

Label 12.2.426...688.1
Degree $12$
Signature $[2, 5]$
Discriminant $-4.265\times 10^{26}$
Root discriminant \(165.64\)
Ramified primes $2,17,37$
Class number $156$ (GRH)
Class group [2, 78] (GRH)
Galois group $D_{12}$ (as 12T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928)
 
gp: K = bnfinit(y^12 - 4*y^11 - 42*y^10 + 244*y^9 + 358*y^8 - 4976*y^7 + 3556*y^6 + 61336*y^5 - 169959*y^4 + 17108*y^3 + 437158*y^2 - 492972*y + 440928, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928)
 

\( x^{12} - 4 x^{11} - 42 x^{10} + 244 x^{9} + 358 x^{8} - 4976 x^{7} + 3556 x^{6} + 61336 x^{5} + \cdots + 440928 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-426534379192149555604210688\) \(\medspace = -\,2^{10}\cdot 17^{9}\cdot 37^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(165.64\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 17^{3/4}37^{2/3}\approx 185.92359263529752$
Ramified primes:   \(2\), \(17\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-17}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{24}a^{8}-\frac{1}{12}a^{7}-\frac{1}{12}a^{6}+\frac{1}{6}a^{5}-\frac{5}{24}a^{4}-\frac{1}{12}a^{3}-\frac{1}{12}a^{2}-\frac{1}{3}a$, $\frac{1}{48}a^{9}-\frac{1}{48}a^{8}+\frac{1}{24}a^{7}+\frac{1}{24}a^{6}-\frac{1}{48}a^{5}+\frac{5}{48}a^{4}-\frac{11}{24}a^{3}+\frac{1}{24}a^{2}-\frac{5}{12}a$, $\frac{1}{902059728}a^{10}+\frac{709935}{150343288}a^{9}+\frac{7140751}{902059728}a^{8}-\frac{5176577}{225514932}a^{7}-\frac{46148867}{902059728}a^{6}+\frac{94819085}{451029864}a^{5}+\frac{91206337}{902059728}a^{4}+\frac{94990837}{225514932}a^{3}+\frac{55497707}{150343288}a^{2}+\frac{103929151}{225514932}a+\frac{3628757}{18792911}$, $\frac{1}{810886747171584}a^{11}-\frac{35713}{810886747171584}a^{10}+\frac{7218027470803}{810886747171584}a^{9}+\frac{14250007609901}{810886747171584}a^{8}-\frac{3197117162881}{42678249851136}a^{7}-\frac{27500557257769}{810886747171584}a^{6}+\frac{68452214460905}{810886747171584}a^{5}-\frac{139961637359725}{810886747171584}a^{4}+\frac{63278684917673}{405443373585792}a^{3}-\frac{59371177615049}{135147791195264}a^{2}+\frac{57968860642273}{202721686792896}a-\frac{2956807523251}{8446736949704}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

$C_{2}\times C_{78}$, which has order $156$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{592}{56378733}a^{11}-\frac{1227}{37585822}a^{10}-\frac{27905}{56378733}a^{9}+\frac{39205}{18792911}a^{8}+\frac{127984}{18792911}a^{7}-\frac{1750421}{37585822}a^{6}-\frac{551123}{18792911}a^{5}+\frac{12624920}{18792911}a^{4}-\frac{48773812}{56378733}a^{3}-\frac{32021299}{18792911}a^{2}+\frac{100417142}{56378733}a-\frac{46047589}{18792911}$, $\frac{907395955}{810886747171584}a^{11}-\frac{1018103507}{810886747171584}a^{10}-\frac{32195921335}{810886747171584}a^{9}+\frac{23803354525}{270295582390528}a^{8}+\frac{3113410095}{14226083283712}a^{7}-\frac{277931693209}{270295582390528}a^{6}+\frac{494543698617}{270295582390528}a^{5}-\frac{113249637725}{270295582390528}a^{4}-\frac{22550591268245}{405443373585792}a^{3}+\frac{266522816170111}{405443373585792}a^{2}-\frac{110089573251917}{202721686792896}a-\frac{28880828648777}{8446736949704}$, $\frac{794763145}{270295582390528}a^{11}-\frac{37282945787}{810886747171584}a^{10}-\frac{69168353215}{810886747171584}a^{9}+\frac{1914995356895}{810886747171584}a^{8}-\frac{106208184475}{42678249851136}a^{7}-\frac{33444125848627}{810886747171584}a^{6}+\frac{86727788307347}{810886747171584}a^{5}+\frac{326848811870945}{810886747171584}a^{4}-\frac{845724473262125}{405443373585792}a^{3}+\frac{285118036899911}{405443373585792}a^{2}+\frac{341871670381833}{67573895597632}a-\frac{59501198198225}{8446736949704}$, $\frac{35\!\cdots\!79}{405443373585792}a^{11}-\frac{31\!\cdots\!29}{135147791195264}a^{10}-\frac{16\!\cdots\!47}{405443373585792}a^{9}+\frac{21\!\cdots\!61}{135147791195264}a^{8}+\frac{43\!\cdots\!15}{7113041641856}a^{7}-\frac{48\!\cdots\!13}{135147791195264}a^{6}-\frac{43\!\cdots\!75}{135147791195264}a^{5}+\frac{70\!\cdots\!23}{135147791195264}a^{4}-\frac{12\!\cdots\!01}{202721686792896}a^{3}-\frac{87\!\cdots\!15}{67573895597632}a^{2}+\frac{13\!\cdots\!59}{101360843396448}a-\frac{80\!\cdots\!13}{4223368474852}$, $\frac{30\!\cdots\!75}{810886747171584}a^{11}-\frac{30\!\cdots\!11}{810886747171584}a^{10}-\frac{16\!\cdots\!75}{810886747171584}a^{9}+\frac{22\!\cdots\!99}{810886747171584}a^{8}+\frac{16\!\cdots\!29}{42678249851136}a^{7}-\frac{48\!\cdots\!79}{810886747171584}a^{6}-\frac{31\!\cdots\!41}{810886747171584}a^{5}+\frac{83\!\cdots\!53}{810886747171584}a^{4}+\frac{12\!\cdots\!93}{135147791195264}a^{3}-\frac{91\!\cdots\!93}{405443373585792}a^{2}+\frac{56\!\cdots\!39}{202721686792896}a-\frac{17\!\cdots\!65}{8446736949704}$, $\frac{16\!\cdots\!93}{67573895597632}a^{11}-\frac{45\!\cdots\!23}{202721686792896}a^{10}+\frac{66\!\cdots\!09}{202721686792896}a^{9}+\frac{22\!\cdots\!65}{67573895597632}a^{8}-\frac{38\!\cdots\!53}{3556520820928}a^{7}-\frac{29\!\cdots\!13}{67573895597632}a^{6}+\frac{22\!\cdots\!25}{67573895597632}a^{5}-\frac{41\!\cdots\!97}{67573895597632}a^{4}-\frac{51\!\cdots\!83}{33786947798816}a^{3}+\frac{22\!\cdots\!11}{101360843396448}a^{2}-\frac{11\!\cdots\!89}{50680421698224}a+\frac{40\!\cdots\!37}{2111684237426}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 301266893.48755616 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 301266893.48755616 \cdot 156}{2\cdot\sqrt{426534379192149555604210688}}\cr\approx \mathstrut & 44.5685314619468 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 - 42*x^10 + 244*x^9 + 358*x^8 - 4976*x^7 + 3556*x^6 + 61336*x^5 - 169959*x^4 + 17108*x^3 + 437158*x^2 - 492972*x + 440928);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{12}$ (as 12T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 9 conjugacy class representatives for $D_{12}$
Character table for $D_{12}$

Intermediate fields

\(\Q(\sqrt{17}) \), 3.1.5476.1, 4.2.19652.1, 6.2.147324047888.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 12 sibling: deg 12
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.2.0.1}{2} }^{6}$ ${\href{/padicField/5.12.0.1}{12} }$ ${\href{/padicField/7.2.0.1}{2} }^{6}$ ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.2.0.1}{2} }^{6}$ R ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.12.0.1}{12} }$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ R ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
\(17\) Copy content Toggle raw display 17.12.9.1$x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
\(37\) Copy content Toggle raw display 37.12.8.2$x^{12} + 8214 x^{6} - 1215672 x^{3} + 3748322$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
1.68.2t1.a.a$1$ $ 2^{2} \cdot 17 $ \(\Q(\sqrt{-17}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.17.2t1.a.a$1$ $ 17 $ \(\Q(\sqrt{17}) \) $C_2$ (as 2T1) $1$ $1$
* 2.5476.3t2.a.a$2$ $ 2^{2} \cdot 37^{2}$ 3.1.5476.1 $S_3$ (as 3T2) $1$ $0$
* 2.1582564.6t3.a.a$2$ $ 2^{2} \cdot 17^{2} \cdot 37^{2}$ 6.2.147324047888.4 $D_{6}$ (as 6T3) $1$ $0$
* 2.1156.4t3.a.a$2$ $ 2^{2} \cdot 17^{2}$ 4.2.19652.1 $D_{4}$ (as 4T3) $1$ $0$
* 2.1582564.12t12.a.b$2$ $ 2^{2} \cdot 17^{2} \cdot 37^{2}$ 12.2.426534379192149555604210688.1 $D_{12}$ (as 12T12) $1$ $0$
* 2.1582564.12t12.a.a$2$ $ 2^{2} \cdot 17^{2} \cdot 37^{2}$ 12.2.426534379192149555604210688.1 $D_{12}$ (as 12T12) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.