Properties

Label 12.2.396154108207169536.5
Degree $12$
Signature $[2, 5]$
Discriminant $-\,2^{36}\cdot 7^{8}$
Root discriminant $29.27$
Ramified primes $2, 7$
Class number $2$
Class group $[2]$
Galois group $C_3:S_3.D_4$ (as 12T82)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-388, -880, -1072, -728, -218, 32, 184, 24, 46, -24, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 4*x^10 - 24*x^9 + 46*x^8 + 24*x^7 + 184*x^6 + 32*x^5 - 218*x^4 - 728*x^3 - 1072*x^2 - 880*x - 388)
 
gp: K = bnfinit(x^12 - 4*x^11 + 4*x^10 - 24*x^9 + 46*x^8 + 24*x^7 + 184*x^6 + 32*x^5 - 218*x^4 - 728*x^3 - 1072*x^2 - 880*x - 388, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 4 x^{10} - 24 x^{9} + 46 x^{8} + 24 x^{7} + 184 x^{6} + 32 x^{5} - 218 x^{4} - 728 x^{3} - 1072 x^{2} - 880 x - 388 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-396154108207169536=-\,2^{36}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{22} a^{10} - \frac{1}{22} a^{9} - \frac{5}{22} a^{8} + \frac{5}{11} a^{6} + \frac{5}{11} a^{5} - \frac{3}{11} a^{3} + \frac{3}{11} a^{2} + \frac{4}{11} a - \frac{3}{11}$, $\frac{1}{6001807702} a^{11} + \frac{9455839}{545618882} a^{10} + \frac{747402991}{6001807702} a^{9} - \frac{71629973}{3000903851} a^{8} - \frac{379872081}{3000903851} a^{7} - \frac{377636227}{3000903851} a^{6} - \frac{1330085994}{3000903851} a^{5} + \frac{1365596251}{3000903851} a^{4} + \frac{68844426}{272809441} a^{3} - \frac{44472476}{3000903851} a^{2} + \frac{41316606}{3000903851} a + \frac{65782989}{3000903851}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14608.8560582 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_3.D_4$ (as 12T82):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 18 conjugacy class representatives for $C_3:S_3.D_4$
Character table for $C_3:S_3.D_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.2.50176.1, 6.2.802816.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.10.2$x^{4} + 2 x^{2} - 1$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.8.26.3$x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 2$$8$$1$$26$$C_2^2:C_4$$[2, 3, 7/2, 4]$
$7$7.6.5.3$x^{6} - 112$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.3.2$x^{6} - 49 x^{2} + 686$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$