Normalized defining polynomial
\( x^{12} - 4 x^{10} + 10 x^{8} - 48 x^{6} + 448 x^{4} - 896 x^{2} - 224 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-346634844681273344=-\,2^{33}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{3}{8} a^{3} + \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{13}{64} a^{4} - \frac{5}{16} a^{2} - \frac{1}{2} a - \frac{7}{16}$, $\frac{1}{256} a^{9} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} - \frac{13}{128} a^{5} - \frac{1}{8} a^{4} + \frac{11}{32} a^{3} + \frac{3}{8} a^{2} + \frac{9}{32} a + \frac{1}{4}$, $\frac{1}{13312} a^{10} + \frac{17}{6656} a^{8} - \frac{1}{32} a^{7} - \frac{181}{6656} a^{6} + \frac{1}{16} a^{5} - \frac{123}{3328} a^{4} + \frac{3}{16} a^{3} - \frac{201}{1664} a^{2} + \frac{3}{8} a + \frac{285}{832}$, $\frac{1}{13312} a^{11} - \frac{9}{6656} a^{9} + \frac{27}{6656} a^{7} + \frac{215}{3328} a^{5} - \frac{1}{4} a^{4} - \frac{773}{1664} a^{3} + \frac{51}{832} a - \frac{1}{2}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8520.23148869 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3.D_4$ (as 12T82):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_3:S_3.D_4$ |
| Character table for $C_3:S_3.D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.14336.2, 6.2.39337984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $7$ | 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |