Normalized defining polynomial
\( x^{12} + 8x^{10} - 12x^{9} + 10x^{8} - 10x^{6} - 16x^{4} + 12x^{3} + 8x^{2} + 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[2, 5]$ |
| |
| Discriminant: |
\(-3189382584467456\)
\(\medspace = -\,2^{33}\cdot 13^{5}\)
|
| |
| Root discriminant: | \(19.59\) |
| |
| Galois root discriminant: | $2^{11/4}13^{1/2}\approx 24.255161140409015$ | ||
| Ramified primes: |
\(2\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-26}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{4982081}a^{11}+\frac{1246874}{4982081}a^{10}+\frac{1521267}{4982081}a^{9}+\frac{570216}{4982081}a^{8}-\frac{292635}{4982081}a^{7}-\frac{1324712}{4982081}a^{6}+\frac{220280}{4982081}a^{5}-\frac{720810}{4982081}a^{4}-\frac{1799718}{4982081}a^{3}+\frac{2360419}{4982081}a^{2}+\frac{657788}{4982081}a-\frac{1311994}{4982081}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{11}+8a^{9}-12a^{8}+10a^{7}-10a^{5}-16a^{3}+12a^{2}+8a$, $\frac{609502}{4982081}a^{11}+\frac{578927}{4982081}a^{10}+\frac{5166205}{4982081}a^{9}-\frac{2178128}{4982081}a^{8}+\frac{1864111}{4982081}a^{7}+\frac{6343841}{4982081}a^{6}-\frac{5982390}{4982081}a^{5}-\frac{5269878}{4982081}a^{4}-\frac{7018342}{4982081}a^{3}-\frac{5393194}{4982081}a^{2}+\frac{10061425}{4982081}a+\frac{890160}{4982081}$, $\frac{3285354}{4982081}a^{11}+\frac{1040685}{4982081}a^{10}+\frac{26426748}{4982081}a^{9}-\frac{30573642}{4982081}a^{8}+\frac{22459428}{4982081}a^{7}+\frac{13756555}{4982081}a^{6}-\frac{29199426}{4982081}a^{5}-\frac{8365415}{4982081}a^{4}-\frac{46748506}{4982081}a^{3}+\frac{23571910}{4982081}a^{2}+\frac{29018230}{4982081}a+\frac{2211218}{4982081}$, $\frac{4800920}{4982081}a^{11}-\frac{2370255}{4982081}a^{10}+\frac{39380338}{4982081}a^{9}-\frac{77164537}{4982081}a^{8}+\frac{84420691}{4982081}a^{7}-\frac{40547786}{4982081}a^{6}-\frac{29568756}{4982081}a^{5}+\frac{12281562}{4982081}a^{4}-\frac{78345500}{4982081}a^{3}+\frac{95787391}{4982081}a^{2}-\frac{9100591}{4982081}a+\frac{6988848}{4982081}$, $\frac{5672165}{4982081}a^{11}-\frac{2430013}{4982081}a^{10}+\frac{47657242}{4982081}a^{9}-\frac{87460856}{4982081}a^{8}+\frac{105563615}{4982081}a^{7}-\frac{50333928}{4982081}a^{6}-\frac{21480276}{4982081}a^{5}+\frac{16429405}{4982081}a^{4}-\frac{98175847}{4982081}a^{3}+\frac{110590109}{4982081}a^{2}-\frac{23300285}{4982081}a+\frac{7512634}{4982081}$, $\frac{6075132}{4982081}a^{11}-\frac{1205786}{4982081}a^{10}+\frac{47899786}{4982081}a^{9}-\frac{82805704}{4982081}a^{8}+\frac{69316192}{4982081}a^{7}-\frac{5682796}{4982081}a^{6}-\frac{66485422}{4982081}a^{5}+\frac{14090516}{4982081}a^{4}-\frac{88590064}{4982081}a^{3}+\frac{92684600}{4982081}a^{2}+\frac{41686240}{4982081}a-\frac{19212411}{4982081}$
|
| |
| Regulator: | \( 2211.66323272 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 2211.66323272 \cdot 1}{2\cdot\sqrt{3189382584467456}}\cr\approx \mathstrut & 0.766999403868 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| 3.1.104.1, 4.2.26624.2 x2, 6.2.2768896.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.26624.2 |
| Degree 6 siblings: | 6.2.2768896.2, 6.0.4499456.1 |
| Degree 8 sibling: | 8.0.119793516544.13 |
| Degree 12 sibling: | 12.0.1295686674939904.1 |
| Minimal sibling: | 4.2.26624.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{4}$ | ${\href{/padicField/5.3.0.1}{3} }^{4}$ | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{5}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.11a1.4 | $x^{4} + 8 x^{3} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $$[3, 4]^{2}$$ |
| 2.2.4.22a1.13 | $x^{8} + 4 x^{7} + 18 x^{6} + 40 x^{5} + 67 x^{4} + 72 x^{3} + 66 x^{2} + 36 x + 19$ | $4$ | $2$ | $22$ | $D_4$ | $$[3, 4]^{2}$$ | |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |