Normalized defining polynomial
\( x^{12} - 6 x^{11} - 12 x^{10} + 86 x^{9} + 402 x^{8} - 2586 x^{7} + 3933 x^{6} - 1749 x^{5} + \cdots - 1985 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-2954177797192602046875\) \(\medspace = -\,3^{13}\cdot 5^{6}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(61.55\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{7/6}5^{1/2}17^{3/4}\approx 67.44708071823815$ | ||
Ramified primes: | \(3\), \(5\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-51}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{15}a^{6}-\frac{1}{5}a^{4}-\frac{1}{3}a^{3}+\frac{2}{5}a^{2}-\frac{1}{3}$, $\frac{1}{15}a^{7}-\frac{1}{5}a^{5}-\frac{1}{3}a^{4}+\frac{2}{5}a^{3}-\frac{1}{3}a$, $\frac{1}{45}a^{8}+\frac{1}{45}a^{7}+\frac{1}{45}a^{6}+\frac{7}{45}a^{5}+\frac{4}{45}a^{4}+\frac{1}{45}a^{3}-\frac{11}{45}a^{2}+\frac{2}{9}a-\frac{1}{9}$, $\frac{1}{675}a^{9}-\frac{1}{225}a^{8}+\frac{1}{225}a^{7}+\frac{2}{225}a^{6}-\frac{44}{225}a^{5}-\frac{7}{25}a^{4}+\frac{32}{225}a^{3}+\frac{11}{25}a^{2}+\frac{22}{45}a+\frac{64}{135}$, $\frac{1}{2025}a^{10}-\frac{1}{2025}a^{9}-\frac{1}{675}a^{8}+\frac{19}{675}a^{7}-\frac{2}{135}a^{6}-\frac{196}{675}a^{5}-\frac{34}{675}a^{4}+\frac{328}{675}a^{3}-\frac{187}{675}a^{2}-\frac{119}{405}a+\frac{38}{405}$, $\frac{1}{235514111625}a^{11}+\frac{48426637}{235514111625}a^{10}-\frac{155286746}{235514111625}a^{9}+\frac{354250841}{78504703875}a^{8}+\frac{2445765007}{78504703875}a^{7}-\frac{78509407}{26168234625}a^{6}+\frac{1939485871}{26168234625}a^{5}+\frac{18151072691}{78504703875}a^{4}-\frac{2510399183}{78504703875}a^{3}-\frac{31079037958}{235514111625}a^{2}+\frac{10827996526}{47102822325}a-\frac{2425230791}{47102822325}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $5$ |
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{309191741}{235514111625}a^{11}-\frac{1994316403}{235514111625}a^{10}-\frac{2829732481}{235514111625}a^{9}+\frac{9343144066}{78504703875}a^{8}+\frac{37191051167}{78504703875}a^{7}-\frac{94680127622}{26168234625}a^{6}+\frac{177447155546}{26168234625}a^{5}-\frac{396943958894}{78504703875}a^{4}-\frac{30694187218}{78504703875}a^{3}+\frac{1885615655137}{235514111625}a^{2}-\frac{310116284794}{47102822325}a-\frac{256318157026}{47102822325}$, $\frac{229459}{64612925}a^{11}-\frac{1549791}{64612925}a^{10}-\frac{64106}{2584517}a^{9}+\frac{62987432}{193838775}a^{8}+\frac{230260268}{193838775}a^{7}-\frac{651575697}{64612925}a^{6}+\frac{4158347864}{193838775}a^{5}-\frac{855171989}{38767755}a^{4}+\frac{740482048}{64612925}a^{3}+\frac{2027912711}{193838775}a^{2}-\frac{128544292}{7753551}a-\frac{122554526}{12922585}$, $\frac{13148891}{26168234625}a^{11}-\frac{82760953}{26168234625}a^{10}-\frac{153633046}{26168234625}a^{9}+\frac{423213406}{8722744875}a^{8}+\frac{1744396427}{8722744875}a^{7}-\frac{4074661582}{2907581625}a^{6}+\frac{5941527991}{2907581625}a^{5}-\frac{35900024}{8722744875}a^{4}-\frac{20820159073}{8722744875}a^{3}+\frac{135133703782}{26168234625}a^{2}-\frac{20351443159}{5233646925}a-\frac{31062712036}{5233646925}$, $\frac{25158884929}{235514111625}a^{11}-\frac{220391374472}{235514111625}a^{10}+\frac{23454278071}{235514111625}a^{9}+\frac{1207914212924}{78504703875}a^{8}+\frac{1662461126533}{78504703875}a^{7}-\frac{11460638340013}{26168234625}a^{6}+\frac{27287969859769}{26168234625}a^{5}-\frac{9050258187586}{78504703875}a^{4}-\frac{126565064785772}{78504703875}a^{3}+\frac{68986186594808}{235514111625}a^{2}+\frac{53659147228144}{47102822325}a+\frac{17300225247991}{47102822325}$, $\frac{182367643337}{235514111625}a^{11}+\frac{1222699094041}{235514111625}a^{10}+\frac{1326527144992}{235514111625}a^{9}-\frac{5532879192727}{78504703875}a^{8}-\frac{20572438691219}{78504703875}a^{7}+\frac{57203478173834}{26168234625}a^{6}-\frac{119834530853747}{26168234625}a^{5}+\frac{362373105578918}{78504703875}a^{4}-\frac{189386478554999}{78504703875}a^{3}-\frac{507787609592239}{235514111625}a^{2}+\frac{166891641773698}{47102822325}a+\frac{95989186071847}{47102822325}$, $\frac{15375533951}{47102822325}a^{11}-\frac{95931637111}{47102822325}a^{10}-\frac{162072328579}{47102822325}a^{9}+\frac{91318441889}{3140188155}a^{8}+\frac{1947113349434}{15700940775}a^{7}-\frac{4588177252811}{5233646925}a^{6}+\frac{312457575179}{209345877}a^{5}-\frac{13388465320109}{15700940775}a^{4}-\frac{7033658462299}{15700940775}a^{3}+\frac{98972081939173}{47102822325}a^{2}-\frac{14099900433208}{9420564465}a-\frac{15973651712689}{9420564465}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2034918.8483919401 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 2034918.8483919401 \cdot 4}{2\cdot\sqrt{2954177797192602046875}}\cr\approx \mathstrut & 2.93304082751766 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 24 |
The 9 conjugacy class representatives for $D_{12}$ |
Character table for $D_{12}$ |
Intermediate fields
\(\Q(\sqrt{85}) \), 3.1.135.1, 4.2.368475.2, 6.2.447697125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 12 sibling: | data not computed |
Minimal sibling: | 12.0.1772506678315561228125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.2.0.1}{2} }^{5}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.2.0.1}{2} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
\(5\) | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(17\) | 17.12.9.3 | $x^{12} + 289 x^{4} - 68782$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |