Properties

Label 12.2.295...875.1
Degree $12$
Signature $[2, 5]$
Discriminant $-2.954\times 10^{21}$
Root discriminant \(61.55\)
Ramified primes $3,5,17$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $D_{12}$ (as 12T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985)
 
gp: K = bnfinit(y^12 - 6*y^11 - 12*y^10 + 86*y^9 + 402*y^8 - 2586*y^7 + 3933*y^6 - 1749*y^5 - 1353*y^4 + 5309*y^3 - 2481*y^2 - 6120*y - 1985, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985)
 

\( x^{12} - 6 x^{11} - 12 x^{10} + 86 x^{9} + 402 x^{8} - 2586 x^{7} + 3933 x^{6} - 1749 x^{5} + \cdots - 1985 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-2954177797192602046875\) \(\medspace = -\,3^{13}\cdot 5^{6}\cdot 17^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(61.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{7/6}5^{1/2}17^{3/4}\approx 67.44708071823815$
Ramified primes:   \(3\), \(5\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-51}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{15}a^{6}-\frac{1}{5}a^{4}-\frac{1}{3}a^{3}+\frac{2}{5}a^{2}-\frac{1}{3}$, $\frac{1}{15}a^{7}-\frac{1}{5}a^{5}-\frac{1}{3}a^{4}+\frac{2}{5}a^{3}-\frac{1}{3}a$, $\frac{1}{45}a^{8}+\frac{1}{45}a^{7}+\frac{1}{45}a^{6}+\frac{7}{45}a^{5}+\frac{4}{45}a^{4}+\frac{1}{45}a^{3}-\frac{11}{45}a^{2}+\frac{2}{9}a-\frac{1}{9}$, $\frac{1}{675}a^{9}-\frac{1}{225}a^{8}+\frac{1}{225}a^{7}+\frac{2}{225}a^{6}-\frac{44}{225}a^{5}-\frac{7}{25}a^{4}+\frac{32}{225}a^{3}+\frac{11}{25}a^{2}+\frac{22}{45}a+\frac{64}{135}$, $\frac{1}{2025}a^{10}-\frac{1}{2025}a^{9}-\frac{1}{675}a^{8}+\frac{19}{675}a^{7}-\frac{2}{135}a^{6}-\frac{196}{675}a^{5}-\frac{34}{675}a^{4}+\frac{328}{675}a^{3}-\frac{187}{675}a^{2}-\frac{119}{405}a+\frac{38}{405}$, $\frac{1}{235514111625}a^{11}+\frac{48426637}{235514111625}a^{10}-\frac{155286746}{235514111625}a^{9}+\frac{354250841}{78504703875}a^{8}+\frac{2445765007}{78504703875}a^{7}-\frac{78509407}{26168234625}a^{6}+\frac{1939485871}{26168234625}a^{5}+\frac{18151072691}{78504703875}a^{4}-\frac{2510399183}{78504703875}a^{3}-\frac{31079037958}{235514111625}a^{2}+\frac{10827996526}{47102822325}a-\frac{2425230791}{47102822325}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{309191741}{235514111625}a^{11}-\frac{1994316403}{235514111625}a^{10}-\frac{2829732481}{235514111625}a^{9}+\frac{9343144066}{78504703875}a^{8}+\frac{37191051167}{78504703875}a^{7}-\frac{94680127622}{26168234625}a^{6}+\frac{177447155546}{26168234625}a^{5}-\frac{396943958894}{78504703875}a^{4}-\frac{30694187218}{78504703875}a^{3}+\frac{1885615655137}{235514111625}a^{2}-\frac{310116284794}{47102822325}a-\frac{256318157026}{47102822325}$, $\frac{229459}{64612925}a^{11}-\frac{1549791}{64612925}a^{10}-\frac{64106}{2584517}a^{9}+\frac{62987432}{193838775}a^{8}+\frac{230260268}{193838775}a^{7}-\frac{651575697}{64612925}a^{6}+\frac{4158347864}{193838775}a^{5}-\frac{855171989}{38767755}a^{4}+\frac{740482048}{64612925}a^{3}+\frac{2027912711}{193838775}a^{2}-\frac{128544292}{7753551}a-\frac{122554526}{12922585}$, $\frac{13148891}{26168234625}a^{11}-\frac{82760953}{26168234625}a^{10}-\frac{153633046}{26168234625}a^{9}+\frac{423213406}{8722744875}a^{8}+\frac{1744396427}{8722744875}a^{7}-\frac{4074661582}{2907581625}a^{6}+\frac{5941527991}{2907581625}a^{5}-\frac{35900024}{8722744875}a^{4}-\frac{20820159073}{8722744875}a^{3}+\frac{135133703782}{26168234625}a^{2}-\frac{20351443159}{5233646925}a-\frac{31062712036}{5233646925}$, $\frac{25158884929}{235514111625}a^{11}-\frac{220391374472}{235514111625}a^{10}+\frac{23454278071}{235514111625}a^{9}+\frac{1207914212924}{78504703875}a^{8}+\frac{1662461126533}{78504703875}a^{7}-\frac{11460638340013}{26168234625}a^{6}+\frac{27287969859769}{26168234625}a^{5}-\frac{9050258187586}{78504703875}a^{4}-\frac{126565064785772}{78504703875}a^{3}+\frac{68986186594808}{235514111625}a^{2}+\frac{53659147228144}{47102822325}a+\frac{17300225247991}{47102822325}$, $\frac{182367643337}{235514111625}a^{11}+\frac{1222699094041}{235514111625}a^{10}+\frac{1326527144992}{235514111625}a^{9}-\frac{5532879192727}{78504703875}a^{8}-\frac{20572438691219}{78504703875}a^{7}+\frac{57203478173834}{26168234625}a^{6}-\frac{119834530853747}{26168234625}a^{5}+\frac{362373105578918}{78504703875}a^{4}-\frac{189386478554999}{78504703875}a^{3}-\frac{507787609592239}{235514111625}a^{2}+\frac{166891641773698}{47102822325}a+\frac{95989186071847}{47102822325}$, $\frac{15375533951}{47102822325}a^{11}-\frac{95931637111}{47102822325}a^{10}-\frac{162072328579}{47102822325}a^{9}+\frac{91318441889}{3140188155}a^{8}+\frac{1947113349434}{15700940775}a^{7}-\frac{4588177252811}{5233646925}a^{6}+\frac{312457575179}{209345877}a^{5}-\frac{13388465320109}{15700940775}a^{4}-\frac{7033658462299}{15700940775}a^{3}+\frac{98972081939173}{47102822325}a^{2}-\frac{14099900433208}{9420564465}a-\frac{15973651712689}{9420564465}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2034918.8483919401 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 2034918.8483919401 \cdot 4}{2\cdot\sqrt{2954177797192602046875}}\cr\approx \mathstrut & 2.93304082751766 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^11 - 12*x^10 + 86*x^9 + 402*x^8 - 2586*x^7 + 3933*x^6 - 1749*x^5 - 1353*x^4 + 5309*x^3 - 2481*x^2 - 6120*x - 1985);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{12}$ (as 12T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 9 conjugacy class representatives for $D_{12}$
Character table for $D_{12}$

Intermediate fields

\(\Q(\sqrt{85}) \), 3.1.135.1, 4.2.368475.2, 6.2.447697125.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed
Minimal sibling: 12.0.1772506678315561228125.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }$ R R ${\href{/padicField/7.2.0.1}{2} }^{5}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.2.0.1}{2} }^{6}$ R ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.3.0.1}{3} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.2.0.1}{2} }^{5}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.4.0.1}{4} }^{3}$ ${\href{/padicField/53.12.0.1}{12} }$ ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.7.1$x^{6} + 6 x^{2} + 6$$6$$1$$7$$S_3$$[3/2]_{2}$
\(5\) Copy content Toggle raw display 5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
\(17\) Copy content Toggle raw display 17.12.9.3$x^{12} + 289 x^{4} - 68782$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$