Normalized defining polynomial
\( x^{12} - 3 x^{11} + 2 x^{10} + 4 x^{9} + 2 x^{8} - 28 x^{7} + 28 x^{6} + 11 x^{5} - 15 x^{4} + 64 x^{3} + \cdots + 18 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-280755374552129536\) \(\medspace = -\,2^{13}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(28.45\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3}17^{11/12}\approx 107.39931174612445$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{4266573207}a^{11}-\frac{286872280}{1422191069}a^{10}-\frac{1037465053}{4266573207}a^{9}+\frac{986459818}{4266573207}a^{8}-\frac{1291970911}{4266573207}a^{7}-\frac{187505560}{4266573207}a^{6}-\frac{798943634}{4266573207}a^{5}-\frac{2102552308}{4266573207}a^{4}-\frac{37826175}{1422191069}a^{3}+\frac{1337405635}{4266573207}a^{2}+\frac{798289586}{4266573207}a+\frac{695644082}{1422191069}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{12615601}{1422191069}a^{11}-\frac{50780525}{1422191069}a^{10}+\frac{51840453}{1422191069}a^{9}+\frac{70510948}{1422191069}a^{8}-\frac{58711529}{1422191069}a^{7}-\frac{479950585}{1422191069}a^{6}+\frac{751624175}{1422191069}a^{5}+\frac{368998160}{1422191069}a^{4}-\frac{930547090}{1422191069}a^{3}+\frac{741701583}{1422191069}a^{2}-\frac{407644685}{1422191069}a+\frac{533544149}{1422191069}$, $\frac{110261017}{4266573207}a^{11}-\frac{84711694}{1422191069}a^{10}-\frac{11647294}{4266573207}a^{9}+\frac{536419795}{4266573207}a^{8}+\frac{683883071}{4266573207}a^{7}-\frac{2883301792}{4266573207}a^{6}+\frac{452294680}{4266573207}a^{5}+\frac{2777064065}{4266573207}a^{4}+\frac{559006150}{1422191069}a^{3}+\frac{4462154461}{4266573207}a^{2}-\frac{7096169989}{4266573207}a+\frac{302560857}{1422191069}$, $\frac{65854454}{1422191069}a^{11}-\frac{248900160}{1422191069}a^{10}+\frac{264450274}{1422191069}a^{9}+\frac{167100822}{1422191069}a^{8}-\frac{79659883}{1422191069}a^{7}-\frac{1872546570}{1422191069}a^{6}+\frac{3047350165}{1422191069}a^{5}-\frac{970620193}{1422191069}a^{4}-\frac{1202757984}{1422191069}a^{3}+\frac{6607378136}{1422191069}a^{2}-\frac{11075710637}{1422191069}a+\frac{4050078917}{1422191069}$, $\frac{19970948}{1422191069}a^{11}-\frac{71872799}{1422191069}a^{10}+\frac{97433807}{1422191069}a^{9}+\frac{26958628}{1422191069}a^{8}-\frac{6994685}{1422191069}a^{7}-\frac{571208224}{1422191069}a^{6}+\frac{809131867}{1422191069}a^{5}-\frac{470885093}{1422191069}a^{4}+\frac{546279421}{1422191069}a^{3}+\frac{2393460347}{1422191069}a^{2}-\frac{4209333813}{1422191069}a+\frac{2102765053}{1422191069}$, $\frac{174265933}{4266573207}a^{11}-\frac{73356811}{1422191069}a^{10}-\frac{275824858}{4266573207}a^{9}+\frac{574490977}{4266573207}a^{8}+\frac{1531171334}{4266573207}a^{7}-\frac{3123019525}{4266573207}a^{6}-\frac{2009544305}{4266573207}a^{5}+\frac{2536041323}{4266573207}a^{4}+\frac{683077724}{1422191069}a^{3}+\frac{12742103080}{4266573207}a^{2}+\frac{5227822526}{4266573207}a+\frac{297545863}{1422191069}$, $\frac{4523141305}{4266573207}a^{11}-\frac{4846155070}{1422191069}a^{10}+\frac{12303871469}{4266573207}a^{9}+\frac{15306608554}{4266573207}a^{8}+\frac{5226755789}{4266573207}a^{7}-\frac{126166351861}{4266573207}a^{6}+\frac{152964669256}{4266573207}a^{5}+\frac{14604079250}{4266573207}a^{4}-\frac{23340298324}{1422191069}a^{3}+\frac{301236197116}{4266573207}a^{2}-\frac{514883948038}{4266573207}a+\frac{118756478537}{1422191069}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 23296.9609907 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 23296.9609907 \cdot 2}{2\cdot\sqrt{280755374552129536}}\cr\approx \mathstrut & 1.72224354707 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.3.0.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
2.3.0.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
2.4.11.2 | $x^{4} + 4 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |