Properties

Label 12.2.199336411529216.1
Degree $12$
Signature $[2, 5]$
Discriminant $-1.993\times 10^{14}$
Root discriminant \(15.55\)
Ramified primes $2,13$
Class number $1$
Class group trivial
Galois group $C_2 \times S_4$ (as 12T22)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2)
 
Copy content gp:K = bnfinit(y^12 - 2*y^10 - 8*y^9 - 18*y^8 - 20*y^7 - 10*y^6 + 8*y^5 + 11*y^4 + 4*y^3 - 8*y^2 - 8*y - 2, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2)
 

\( x^{12} - 2x^{10} - 8x^{9} - 18x^{8} - 20x^{7} - 10x^{6} + 8x^{5} + 11x^{4} + 4x^{3} - 8x^{2} - 8x - 2 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 5]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-199336411529216\) \(\medspace = -\,2^{29}\cdot 13^{5}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(15.55\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}13^{1/2}\approx 24.255161140409015$
Ramified primes:   \(2\), \(13\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-26}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{6004}a^{11}+\frac{485}{6004}a^{10}+\frac{1067}{6004}a^{9}+\frac{1143}{6004}a^{8}-\frac{1033}{6004}a^{7}-\frac{2693}{6004}a^{6}+\frac{2757}{6004}a^{5}-\frac{1739}{6004}a^{4}+\frac{1}{38}a^{3}-\frac{709}{3002}a^{2}+\frac{1361}{3002}a-\frac{359}{3002}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $6$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{5607}{6004}a^{11}-\frac{3419}{6004}a^{10}-\frac{9323}{6004}a^{9}-\frac{39495}{6004}a^{8}-\frac{76223}{6004}a^{7}-\frac{62633}{6004}a^{6}-\frac{13809}{6004}a^{5}+\frac{59963}{6004}a^{4}+\frac{173}{38}a^{3}-\frac{715}{3002}a^{2}-\frac{23973}{3002}a-\frac{7577}{3002}$, $\frac{3392}{1501}a^{11}-\frac{1477}{1501}a^{10}-\frac{12803}{3002}a^{9}-\frac{24043}{1501}a^{8}-\frac{50135}{1501}a^{7}-\frac{44600}{1501}a^{6}-\frac{24489}{3002}a^{5}+\frac{33264}{1501}a^{4}+\frac{267}{19}a^{3}+\frac{2350}{1501}a^{2}-\frac{26645}{1501}a-\frac{14343}{1501}$, $\frac{1151}{6004}a^{11}-\frac{137}{6004}a^{10}-\frac{2703}{6004}a^{9}-\frac{8289}{6004}a^{8}-\frac{18203}{6004}a^{7}-\frac{19591}{6004}a^{6}-\frac{8813}{6004}a^{5}+\frac{6749}{6004}a^{4}+\frac{11}{38}a^{3}-\frac{2517}{3002}a^{2}-\frac{3535}{3002}a-\frac{1935}{3002}$, $\frac{16987}{6004}a^{11}-\frac{7799}{6004}a^{10}-\frac{30967}{6004}a^{9}-\frac{120875}{6004}a^{8}-\frac{250047}{6004}a^{7}-\frac{220661}{6004}a^{6}-\frac{64085}{6004}a^{5}+\frac{167399}{6004}a^{4}+\frac{685}{38}a^{3}+\frac{6245}{3002}a^{2}-\frac{71143}{3002}a-\frac{34293}{3002}$, $\frac{125}{1501}a^{11}-\frac{331}{3002}a^{10}-\frac{214}{1501}a^{9}-\frac{941}{3002}a^{8}-\frac{1540}{1501}a^{7}+\frac{699}{3002}a^{6}+\frac{896}{1501}a^{5}+\frac{2041}{3002}a^{4}+\frac{22}{19}a^{3}-\frac{1633}{1501}a^{2}-\frac{477}{1501}a+\frac{310}{1501}$, $\frac{1199}{6004}a^{11}-\frac{873}{6004}a^{10}-\frac{2521}{6004}a^{9}-\frac{7461}{6004}a^{8}-\frac{13751}{6004}a^{7}-\frac{10763}{6004}a^{6}+\frac{6445}{6004}a^{5}+\frac{13337}{6004}a^{4}+\frac{21}{38}a^{3}+\frac{2477}{3002}a^{2}-\frac{1249}{3002}a-\frac{1155}{3002}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1091.06965821 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 1091.06965821 \cdot 1}{2\cdot\sqrt{199336411529216}}\cr\approx \mathstrut & 1.51352116370 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^10 - 8*x^9 - 18*x^8 - 20*x^7 - 10*x^6 + 8*x^5 + 11*x^4 + 4*x^3 - 8*x^2 - 8*x - 2); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times S_4$ (as 12T22):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 48
The 10 conjugacy class representatives for $C_2 \times S_4$
Character table for $C_2 \times S_4$

Intermediate fields

3.1.104.1, 6.2.692224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.2.1384448.1, 6.0.2249728.1
Degree 8 siblings: 8.4.708837376.1, 8.0.7487094784.4
Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed
Minimal sibling: 6.2.1384448.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{3}$ R ${\href{/padicField/17.3.0.1}{3} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{3}$ ${\href{/padicField/29.4.0.1}{4} }^{3}$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{3}$ ${\href{/padicField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.4.10a1.8$x^{4} + 4 x^{3} + 12 x^{2} + 10$$4$$1$$10$$D_{4}$$$[2, 3, \frac{7}{2}]$$
2.1.4.9a1.5$x^{4} + 2 x^{2} + 6$$4$$1$$9$$D_{4}$$$[2, 3, \frac{7}{2}]$$
2.1.4.10a1.8$x^{4} + 4 x^{3} + 12 x^{2} + 10$$4$$1$$10$$D_{4}$$$[2, 3, \frac{7}{2}]$$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
13.1.2.1a1.2$x^{2} + 26$$2$$1$$1$$C_2$$$[\ ]_{2}$$
13.2.2.2a1.2$x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
13.2.2.2a1.2$x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)