Properties

Label 12.2.184884258895036416.2
Degree $12$
Signature $[2, 5]$
Discriminant $-\,2^{32}\cdot 3^{16}$
Root discriminant $27.47$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $C_3^2:D_4$ (as 12T38)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-196, 0, -36, 0, -135, 0, -40, 0, 18, 0, 12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 12*x^10 + 18*x^8 - 40*x^6 - 135*x^4 - 36*x^2 - 196)
 
gp: K = bnfinit(x^12 + 12*x^10 + 18*x^8 - 40*x^6 - 135*x^4 - 36*x^2 - 196, 1)
 

Normalized defining polynomial

\( x^{12} + 12 x^{10} + 18 x^{8} - 40 x^{6} - 135 x^{4} - 36 x^{2} - 196 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-184884258895036416=-\,2^{32}\cdot 3^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{28} a^{9} - \frac{1}{4} a^{7} - \frac{3}{28} a^{5} + \frac{3}{28} a^{3} - \frac{5}{14} a$, $\frac{1}{294364} a^{10} - \frac{9669}{42052} a^{8} + \frac{25043}{294364} a^{6} - \frac{43649}{294364} a^{4} - \frac{1728}{73591} a^{2} - \frac{4677}{10513}$, $\frac{1}{294364} a^{11} - \frac{4605}{294364} a^{9} + \frac{25043}{294364} a^{7} + \frac{8783}{42052} a^{5} + \frac{1255}{10513} a^{3} + \frac{30339}{73591} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 20890.102618 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3^2:D_4$ (as 12T38):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 15 conjugacy class representatives for $C_3^2:D_4$
Character table for $C_3^2:D_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.2.1024.1, 6.2.13436928.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 24 sibling: data not computed
Degree 36 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.12.0.1}{12} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.10.2$x^{4} + 2 x^{2} - 1$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.8.22.87$x^{8} + 4 x^{7} + 6 x^{4} + 12 x^{2} + 2$$8$$1$$22$$D_4$$[2, 3, 7/2]$
$3$3.12.16.35$x^{12} + 96 x^{11} - 864 x^{10} - 45 x^{9} - 189 x^{8} - 891 x^{7} - 252 x^{6} + 297 x^{5} + 891 x^{4} - 162 x^{3} - 486 x^{2} + 729 x + 567$$3$$4$$16$$C_3\times (C_3 : C_4)$$[2, 2]^{4}$