Normalized defining polynomial
\( x^{12} - 34x^{8} - 153x^{6} - 561x^{4} - 1071x^{2} - 2176 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-17968343971336290304\) \(\medspace = -\,2^{19}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(40.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{47/16}17^{11/12}\approx 102.84593327285764$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{25633309}a^{10}+\frac{5103753}{25633309}a^{8}+\frac{8045574}{25633309}a^{6}+\frac{9552553}{25633309}a^{4}+\frac{9412191}{25633309}a^{2}+\frac{10519718}{25633309}$, $\frac{1}{205066472}a^{11}+\frac{10250460}{25633309}a^{9}+\frac{4022787}{102533236}a^{7}-\frac{41714065}{205066472}a^{5}+\frac{9412191}{205066472}a^{3}-\frac{15113591}{205066472}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{13445}{25633309}a^{10}-\frac{409108}{25633309}a^{8}+\frac{178450}{25633309}a^{6}+\frac{11196995}{25633309}a^{4}+\frac{46528080}{25633309}a^{2}+\frac{69909375}{25633309}$, $\frac{143456}{25633309}a^{10}-\frac{214599}{25633309}a^{8}-\frac{5140599}{25633309}a^{6}-\frac{11289281}{25633309}a^{4}-\frac{50546097}{25633309}a^{2}-\frac{95668585}{25633309}$, $\frac{798513}{205066472}a^{11}-\frac{6285}{1971793}a^{10}-\frac{130664}{25633309}a^{9}+\frac{40919}{1971793}a^{8}-\frac{16034913}{102533236}a^{7}+\frac{198895}{1971793}a^{6}-\frac{71071913}{205066472}a^{5}-\frac{642341}{1971793}a^{4}-\frac{134393289}{205066472}a^{3}-\frac{1830435}{1971793}a^{2}-\frac{31946511}{205066472}a-\frac{8123719}{1971793}$, $\frac{134516}{25633309}a^{10}-\frac{476399}{25633309}a^{8}-\frac{5507105}{25633309}a^{6}-\frac{927513}{25633309}a^{4}+\frac{35519737}{25633309}a^{2}+\frac{137362997}{25633309}$, $\frac{2205911}{205066472}a^{11}-\frac{1723}{25633309}a^{10}-\frac{799402}{25633309}a^{9}-\frac{1541432}{25633309}a^{8}-\frac{33882135}{102533236}a^{7}+\frac{5096167}{25633309}a^{6}-\frac{87522375}{205066472}a^{5}+\frac{48802177}{25633309}a^{4}-\frac{729695471}{205066472}a^{3}+\frac{59946122}{25633309}a^{2}-\frac{760017473}{205066472}a+\frac{407408293}{25633309}$, $\frac{670551}{102533236}a^{11}+\frac{16373}{25633309}a^{10}-\frac{509999}{25633309}a^{9}-\frac{839471}{25633309}a^{8}-\frac{11793669}{51266618}a^{7}+\frac{608151}{25633309}a^{6}-\frac{33619307}{102533236}a^{5}+\frac{15132060}{25633309}a^{4}-\frac{181787975}{102533236}a^{3}-\frac{1650465}{25633309}a^{2}-\frac{151045637}{102533236}a+\frac{162939497}{25633309}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 111433.616757 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 111433.616757 \cdot 2}{2\cdot\sqrt{17968343971336290304}}\cr\approx \mathstrut & 1.02972565533 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.2246042996417036288.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.10.2 | $x^{4} + 4 x^{3} + 2$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
2.6.6.1 | $x^{6} + 6 x^{5} + 34 x^{4} + 80 x^{3} + 204 x^{2} + 216 x + 216$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |