Properties

Label 12.2.171382426877952.1
Degree $12$
Signature $[2, 5]$
Discriminant $-\,2^{14}\cdot 3^{21}$
Root discriminant $15.35$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $C_3:S_4$ (as 12T44)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -12, 36, -50, 36, -54, 30, -18, 18, -4, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 6*x^10 - 4*x^9 + 18*x^8 - 18*x^7 + 30*x^6 - 54*x^5 + 36*x^4 - 50*x^3 + 36*x^2 - 12*x + 2)
 
gp: K = bnfinit(x^12 + 6*x^10 - 4*x^9 + 18*x^8 - 18*x^7 + 30*x^6 - 54*x^5 + 36*x^4 - 50*x^3 + 36*x^2 - 12*x + 2, 1)
 

Normalized defining polynomial

\( x^{12} + 6 x^{10} - 4 x^{9} + 18 x^{8} - 18 x^{7} + 30 x^{6} - 54 x^{5} + 36 x^{4} - 50 x^{3} + 36 x^{2} - 12 x + 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-171382426877952=-\,2^{14}\cdot 3^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{47} a^{10} - \frac{21}{47} a^{9} + \frac{8}{47} a^{8} + \frac{23}{47} a^{7} + \frac{18}{47} a^{6} - \frac{12}{47} a^{5} - \frac{6}{47} a^{4} - \frac{18}{47} a^{3} - \frac{7}{47} a^{2} + \frac{9}{47} a + \frac{6}{47}$, $\frac{1}{56541} a^{11} - \frac{551}{56541} a^{10} + \frac{5263}{56541} a^{9} - \frac{9051}{18847} a^{8} + \frac{7489}{18847} a^{7} - \frac{5769}{18847} a^{6} - \frac{6013}{18847} a^{5} + \frac{2088}{18847} a^{4} - \frac{7225}{18847} a^{3} + \frac{11521}{56541} a^{2} - \frac{19052}{56541} a + \frac{9886}{56541}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 529.332182878 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_4$ (as 12T44):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $C_3:S_4$
Character table for $C_3:S_4$

Intermediate fields

3.1.108.1, 4.2.3888.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.14.1$x^{12} + 2 x^{3} + 2$$12$$1$$14$$S_4$$[4/3, 4/3]_{3}^{2}$
$3$3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.9.18.2$x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$$9$$1$$18$$C_3^2:C_2$$[3/2, 5/2]_{2}$