Normalized defining polynomial
\( x^{12} - 2x^{10} + 3x^{8} - 17x^{6} + 13x^{4} + 21x^{2} - 3 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[2, 5]$ |
| |
| Discriminant: |
\(-137303833711203\)
\(\medspace = -\,3^{9}\cdot 17^{8}\)
|
| |
| Root discriminant: | \(15.07\) |
| |
| Galois root discriminant: | $3^{3/4}17^{2/3}\approx 15.070935874553902$ | ||
| Ramified primes: |
\(3\), \(17\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{164}a^{10}+\frac{9}{164}a^{8}+\frac{5}{41}a^{6}-\frac{43}{164}a^{4}-\frac{1}{2}a^{3}-\frac{25}{82}a^{2}+\frac{45}{164}$, $\frac{1}{328}a^{11}-\frac{1}{328}a^{10}-\frac{73}{328}a^{9}+\frac{73}{328}a^{8}-\frac{31}{164}a^{7}+\frac{31}{164}a^{6}-\frac{43}{328}a^{5}+\frac{43}{328}a^{4}-\frac{25}{164}a^{3}-\frac{57}{164}a^{2}-\frac{37}{328}a-\frac{127}{328}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{7}{328}a^{11}-\frac{5}{328}a^{10}-\frac{19}{328}a^{9}+\frac{37}{328}a^{8}+\frac{29}{164}a^{7}-\frac{9}{164}a^{6}-\frac{137}{328}a^{5}+\frac{215}{328}a^{4}+\frac{153}{164}a^{3}-\frac{203}{164}a^{2}-\frac{95}{328}a-\frac{143}{328}$, $\frac{7}{328}a^{11}+\frac{5}{328}a^{10}-\frac{19}{328}a^{9}-\frac{37}{328}a^{8}+\frac{29}{164}a^{7}+\frac{9}{164}a^{6}-\frac{137}{328}a^{5}-\frac{215}{328}a^{4}+\frac{153}{164}a^{3}+\frac{203}{164}a^{2}-\frac{95}{328}a+\frac{143}{328}$, $\frac{71}{328}a^{11}+\frac{23}{328}a^{10}-\frac{99}{328}a^{9}-\frac{39}{328}a^{8}+\frac{95}{164}a^{7}+\frac{25}{164}a^{6}-\frac{1085}{328}a^{5}-\frac{333}{328}a^{4}+\frac{193}{164}a^{3}+\frac{81}{164}a^{2}+\frac{1473}{328}a+\frac{625}{328}$, $\frac{15}{164}a^{10}-\frac{29}{164}a^{8}+\frac{27}{82}a^{6}-\frac{235}{164}a^{4}+\frac{38}{41}a^{2}-\frac{1}{2}a+\frac{101}{164}$, $\frac{15}{164}a^{10}-\frac{29}{164}a^{8}+\frac{27}{82}a^{6}-\frac{235}{164}a^{4}+\frac{38}{41}a^{2}+\frac{1}{2}a+\frac{101}{164}$, $\frac{9}{164}a^{10}-\frac{1}{164}a^{8}+\frac{4}{41}a^{6}-\frac{141}{164}a^{4}+\frac{1}{2}a^{3}-\frac{10}{41}a^{2}+\frac{1}{2}a+\frac{77}{164}$
|
| |
| Regulator: | \( 246.47439616 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 246.47439616 \cdot 1}{2\cdot\sqrt{137303833711203}}\cr\approx \mathstrut & 0.41196452238 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| 3.1.867.1, 4.2.7803.1 x2, 6.2.6765201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.7803.1 |
| Degree 6 siblings: | 6.2.6765201.1, 6.0.2255067.1 |
| Degree 8 sibling: | 8.0.60886809.1 |
| Degree 12 sibling: | 12.0.45767944570401.1 |
| Minimal sibling: | 4.2.7803.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.4.3a1.2 | $x^{4} + 6$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
| 3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ | |
|
\(17\)
| 17.1.3.2a1.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 17.1.3.2a1.1 | $x^{3} + 17$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 17.2.3.4a1.2 | $x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |