Properties

Label 12.2.137...739.2
Degree $12$
Signature $[2, 5]$
Discriminant $-1.372\times 10^{27}$
Root discriminant \(182.58\)
Ramified primes $11,37$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\PGL(2,11)$ (as 12T218)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056)
 
gp: K = bnfinit(y^12 - 4*y^11 - 11*y^10 + 55*y^9 + 99*y^8 + 803*y^7 - 7414*y^6 + 2255*y^5 + 26334*y^4 + 115764*y^3 - 246488*y^2 - 809024*y + 1821056, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056)
 

\( x^{12} - 4 x^{11} - 11 x^{10} + 55 x^{9} + 99 x^{8} + 803 x^{7} - 7414 x^{6} + 2255 x^{5} + \cdots + 1821056 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1371945240568483487545135739\) \(\medspace = -\,11^{11}\cdot 37^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(182.58\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{119/110}37^{10/11}\approx 356.64445176161007$
Ramified primes:   \(11\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{9}+\frac{1}{16}a^{7}-\frac{1}{16}a^{6}-\frac{1}{16}a^{5}-\frac{1}{16}a^{4}+\frac{3}{8}a^{3}-\frac{1}{16}a^{2}-\frac{1}{8}a-\frac{1}{2}$, $\frac{1}{160}a^{10}-\frac{1}{40}a^{9}+\frac{1}{160}a^{8}+\frac{7}{160}a^{7}+\frac{31}{160}a^{6}+\frac{7}{160}a^{5}-\frac{1}{80}a^{4}-\frac{61}{160}a^{3}-\frac{1}{16}a^{2}-\frac{1}{20}a+\frac{1}{5}$, $\frac{1}{74\!\cdots\!20}a^{11}+\frac{16\!\cdots\!67}{37\!\cdots\!60}a^{10}+\frac{16\!\cdots\!89}{74\!\cdots\!20}a^{9}+\frac{90\!\cdots\!13}{14\!\cdots\!04}a^{8}-\frac{38\!\cdots\!63}{74\!\cdots\!20}a^{7}+\frac{26\!\cdots\!05}{14\!\cdots\!04}a^{6}-\frac{19\!\cdots\!99}{18\!\cdots\!80}a^{5}-\frac{79\!\cdots\!57}{74\!\cdots\!20}a^{4}-\frac{17\!\cdots\!97}{18\!\cdots\!80}a^{3}+\frac{27\!\cdots\!03}{18\!\cdots\!80}a^{2}-\frac{72\!\cdots\!51}{23\!\cdots\!60}a+\frac{20\!\cdots\!19}{11\!\cdots\!80}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{589772472015097}{14\!\cdots\!04}a^{11}+\frac{33\!\cdots\!99}{37\!\cdots\!60}a^{10}-\frac{33\!\cdots\!07}{74\!\cdots\!20}a^{9}-\frac{36\!\cdots\!27}{74\!\cdots\!20}a^{8}-\frac{12\!\cdots\!19}{74\!\cdots\!20}a^{7}+\frac{16\!\cdots\!53}{74\!\cdots\!20}a^{6}+\frac{27\!\cdots\!29}{18\!\cdots\!80}a^{5}-\frac{24\!\cdots\!41}{74\!\cdots\!20}a^{4}-\frac{15\!\cdots\!17}{18\!\cdots\!80}a^{3}+\frac{20\!\cdots\!35}{37\!\cdots\!76}a^{2}+\frac{10\!\cdots\!63}{23\!\cdots\!60}a+\frac{24\!\cdots\!99}{11\!\cdots\!80}$, $\frac{20\!\cdots\!83}{93\!\cdots\!40}a^{11}-\frac{18\!\cdots\!23}{93\!\cdots\!40}a^{10}+\frac{62\!\cdots\!37}{93\!\cdots\!40}a^{9}-\frac{18\!\cdots\!37}{93\!\cdots\!44}a^{8}+\frac{53\!\cdots\!03}{46\!\cdots\!20}a^{7}-\frac{34\!\cdots\!15}{93\!\cdots\!44}a^{6}+\frac{79\!\cdots\!07}{93\!\cdots\!40}a^{5}+\frac{93\!\cdots\!49}{93\!\cdots\!40}a^{4}+\frac{50\!\cdots\!41}{93\!\cdots\!40}a^{3}+\frac{62\!\cdots\!99}{23\!\cdots\!60}a^{2}-\frac{13\!\cdots\!19}{23\!\cdots\!60}a+\frac{49\!\cdots\!13}{58\!\cdots\!90}$, $\frac{26\!\cdots\!21}{37\!\cdots\!60}a^{11}-\frac{89\!\cdots\!97}{18\!\cdots\!80}a^{10}-\frac{97\!\cdots\!99}{37\!\cdots\!60}a^{9}+\frac{94\!\cdots\!77}{37\!\cdots\!60}a^{8}+\frac{13\!\cdots\!61}{37\!\cdots\!60}a^{7}+\frac{67\!\cdots\!57}{37\!\cdots\!60}a^{6}-\frac{47\!\cdots\!63}{93\!\cdots\!40}a^{5}-\frac{58\!\cdots\!21}{37\!\cdots\!60}a^{4}-\frac{13\!\cdots\!01}{18\!\cdots\!88}a^{3}+\frac{13\!\cdots\!03}{93\!\cdots\!40}a^{2}+\frac{14\!\cdots\!21}{11\!\cdots\!80}a-\frac{78\!\cdots\!43}{11\!\cdots\!18}$, $\frac{10\!\cdots\!29}{74\!\cdots\!20}a^{11}+\frac{21\!\cdots\!51}{37\!\cdots\!60}a^{10}-\frac{16\!\cdots\!63}{74\!\cdots\!20}a^{9}+\frac{22\!\cdots\!61}{74\!\cdots\!20}a^{8}+\frac{35\!\cdots\!69}{14\!\cdots\!04}a^{7}+\frac{12\!\cdots\!61}{74\!\cdots\!20}a^{6}-\frac{54\!\cdots\!53}{18\!\cdots\!80}a^{5}-\frac{26\!\cdots\!17}{14\!\cdots\!04}a^{4}-\frac{14\!\cdots\!47}{18\!\cdots\!80}a^{3}+\frac{27\!\cdots\!67}{18\!\cdots\!80}a^{2}+\frac{10\!\cdots\!31}{11\!\cdots\!80}a-\frac{68\!\cdots\!71}{11\!\cdots\!80}$, $\frac{55\!\cdots\!91}{74\!\cdots\!20}a^{11}-\frac{52\!\cdots\!03}{74\!\cdots\!52}a^{10}+\frac{37\!\cdots\!71}{14\!\cdots\!04}a^{9}-\frac{50\!\cdots\!09}{74\!\cdots\!20}a^{8}+\frac{31\!\cdots\!39}{74\!\cdots\!20}a^{7}-\frac{10\!\cdots\!09}{74\!\cdots\!20}a^{6}+\frac{64\!\cdots\!39}{18\!\cdots\!80}a^{5}+\frac{42\!\cdots\!01}{74\!\cdots\!20}a^{4}+\frac{37\!\cdots\!89}{18\!\cdots\!80}a^{3}-\frac{20\!\cdots\!07}{18\!\cdots\!80}a^{2}-\frac{95\!\cdots\!51}{46\!\cdots\!72}a+\frac{37\!\cdots\!77}{11\!\cdots\!80}$, $\frac{73\!\cdots\!91}{37\!\cdots\!60}a^{11}-\frac{33\!\cdots\!59}{37\!\cdots\!76}a^{10}-\frac{22\!\cdots\!89}{74\!\cdots\!52}a^{9}+\frac{88\!\cdots\!91}{37\!\cdots\!60}a^{8}-\frac{25\!\cdots\!81}{37\!\cdots\!60}a^{7}+\frac{95\!\cdots\!11}{37\!\cdots\!60}a^{6}-\frac{93\!\cdots\!01}{93\!\cdots\!40}a^{5}-\frac{19\!\cdots\!79}{37\!\cdots\!60}a^{4}+\frac{16\!\cdots\!59}{93\!\cdots\!40}a^{3}-\frac{20\!\cdots\!17}{93\!\cdots\!40}a^{2}-\frac{28\!\cdots\!79}{46\!\cdots\!72}a+\frac{34\!\cdots\!51}{29\!\cdots\!45}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13511808066.7 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 13511808066.7 \cdot 1}{2\cdot\sqrt{1371945240568483487545135739}}\cr\approx \mathstrut & 7.14454237247 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 - 11*x^10 + 55*x^9 + 99*x^8 + 803*x^7 - 7414*x^6 + 2255*x^5 + 26334*x^4 + 115764*x^3 - 246488*x^2 - 809024*x + 1821056);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\PGL(2,11)$ (as 12T218):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1320
The 13 conjugacy class representatives for $\PGL(2,11)$
Character table for $\PGL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 24 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{5}{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ ${\href{/padicField/3.11.0.1}{11} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.2.0.1}{2} }^{6}$ ${\href{/padicField/7.12.0.1}{12} }$ R ${\href{/padicField/13.12.0.1}{12} }$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ R ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.11.11.8$x^{11} + 55 x + 11$$11$$1$$11$$F_{11}$$[11/10]_{10}$
\(37\) Copy content Toggle raw display $\Q_{37}$$x + 35$$1$$1$$0$Trivial$[\ ]$
37.11.10.1$x^{11} + 37$$11$$1$$10$$C_{11}:C_5$$[\ ]_{11}^{5}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.11.2t1.a.a$1$ $ 11 $ \(\Q(\sqrt{-11}) \) $C_2$ (as 2T1) $1$ $-1$
10.137...739.55.c.a$10$ $ 11^{11} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.137...739.55.d.a$10$ $ 11^{11} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.137...739.110.b.a$10$ $ 11^{11} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.137...739.22t14.b.a$10$ $ 11^{11} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.137...739.22t14.b.b$10$ $ 11^{11} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $0$
* 11.137...739.12t218.b.a$11$ $ 11^{11} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $1$
11.150...129.24t2949.b.a$11$ $ 11^{12} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $-1$
12.166...419.55.b.a$12$ $ 11^{13} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $2$
12.166...419.110.b.a$12$ $ 11^{13} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $-2$
12.166...419.110.b.b$12$ $ 11^{13} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $-2$
12.166...419.55.b.b$12$ $ 11^{13} \cdot 37^{10}$ 12.2.1371945240568483487545135739.2 $\PGL(2,11)$ (as 12T218) $1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.