Properties

Label 12.2.112...144.5
Degree $12$
Signature $[2, 5]$
Discriminant $-1.123\times 10^{18}$
Root discriminant \(31.93\)
Ramified primes $2,17$
Class number $4$
Class group [2, 2]
Galois group $S_4^2:C_4$ (as 12T238)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64)
 
gp: K = bnfinit(y^12 - 4*y^11 + 13*y^10 - 22*y^9 + 8*y^8 + 32*y^7 - 88*y^6 + 64*y^5 + 32*y^4 - 176*y^3 + 208*y^2 - 128*y + 64, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64)
 

\( x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} + 8 x^{8} + 32 x^{7} - 88 x^{6} + 64 x^{5} + 32 x^{4} + \cdots + 64 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1123021498208518144\) \(\medspace = -\,2^{15}\cdot 17^{11}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(31.93\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{25/12}17^{11/12}\approx 56.89280357730381$
Ramified primes:   \(2\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-34}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}$, $\frac{1}{8}a^{8}-\frac{1}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}$, $\frac{1}{16}a^{9}-\frac{1}{16}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{304}a^{10}-\frac{9}{304}a^{9}-\frac{1}{304}a^{8}-\frac{37}{304}a^{7}+\frac{3}{38}a^{6}-\frac{7}{152}a^{5}+\frac{3}{19}a^{4}+\frac{1}{76}a^{3}-\frac{1}{38}a^{2}+\frac{1}{38}a+\frac{2}{19}$, $\frac{1}{1216}a^{11}-\frac{1}{608}a^{10}-\frac{7}{1216}a^{9}-\frac{11}{304}a^{8}-\frac{1}{19}a^{7}+\frac{5}{152}a^{6}-\frac{11}{152}a^{5}-\frac{3}{19}a^{4}+\frac{3}{38}a^{3}-\frac{3}{76}a^{2}+\frac{15}{76}a+\frac{7}{38}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{7}{64}a^{11}-\frac{225}{608}a^{10}+\frac{1333}{1216}a^{9}-\frac{429}{304}a^{8}-\frac{137}{152}a^{7}+\frac{607}{152}a^{6}-\frac{913}{152}a^{5}-\frac{5}{19}a^{4}+\frac{281}{38}a^{3}-\frac{953}{76}a^{2}+\frac{687}{76}a-\frac{13}{38}$, $\frac{49}{1216}a^{11}-\frac{135}{608}a^{10}+\frac{825}{1216}a^{9}-\frac{191}{152}a^{8}+\frac{71}{152}a^{7}+\frac{413}{152}a^{6}-\frac{789}{152}a^{5}+\frac{169}{76}a^{4}+\frac{96}{19}a^{3}-\frac{669}{76}a^{2}+\frac{535}{76}a-\frac{7}{2}$, $\frac{17}{608}a^{11}-\frac{9}{152}a^{10}+\frac{89}{608}a^{9}+\frac{7}{304}a^{8}-\frac{111}{152}a^{7}+\frac{101}{152}a^{6}+\frac{4}{19}a^{5}-\frac{173}{76}a^{4}+\frac{35}{38}a^{3}+\frac{13}{19}a^{2}-\frac{31}{38}a+\frac{22}{19}$, $\frac{33}{608}a^{11}-\frac{63}{304}a^{10}+\frac{385}{608}a^{9}-\frac{139}{152}a^{8}-\frac{15}{76}a^{7}+\frac{369}{152}a^{6}-\frac{315}{76}a^{5}+\frac{13}{38}a^{4}+\frac{183}{38}a^{3}-\frac{158}{19}a^{2}+\frac{161}{38}a-2$, $\frac{29}{304}a^{11}-\frac{45}{152}a^{10}+\frac{275}{304}a^{9}-\frac{83}{76}a^{8}-\frac{127}{152}a^{7}+\frac{231}{76}a^{6}-\frac{393}{76}a^{5}+\frac{5}{38}a^{4}+\frac{237}{38}a^{3}-\frac{242}{19}a^{2}+\frac{134}{19}a-5$, $\frac{47}{304}a^{11}-\frac{143}{304}a^{10}+\frac{473}{304}a^{9}-\frac{575}{304}a^{8}-\frac{47}{76}a^{7}+\frac{675}{152}a^{6}-\frac{701}{76}a^{5}+\frac{11}{19}a^{4}+\frac{113}{19}a^{3}-\frac{411}{19}a^{2}+\frac{196}{19}a-\frac{181}{19}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 52217.0172233 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 52217.0172233 \cdot 4}{2\cdot\sqrt{1123021498208518144}}\cr\approx \mathstrut & 3.86017820075 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 + 8*x^8 + 32*x^7 - 88*x^6 + 64*x^5 + 32*x^4 - 176*x^3 + 208*x^2 - 128*x + 64);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4^2:C_4$ (as 12T238):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 2304
The 40 conjugacy class representatives for $S_4^2:C_4$
Character table for $S_4^2:C_4$

Intermediate fields

\(\Q(\sqrt{17}) \), 6.4.45435424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.4.140377687276064768.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }$ ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.12.0.1}{12} }$ ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ R ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.3$x^{2} + 2$$2$$1$$3$$C_2$$[3]$
2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
2.6.6.7$x^{6} + 2 x^{2} + 2 x + 2$$6$$1$$6$$S_4$$[4/3, 4/3]_{3}^{2}$
\(17\) Copy content Toggle raw display 17.12.11.2$x^{12} + 34$$12$$1$$11$$S_3 \times C_4$$[\ ]_{12}^{2}$