Normalized defining polynomial
\( x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} + 8 x^{8} + 32 x^{7} - 88 x^{6} + 64 x^{5} + 32 x^{4} + \cdots + 64 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-1123021498208518144\) \(\medspace = -\,2^{15}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{25/12}17^{11/12}\approx 56.89280357730381$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}$, $\frac{1}{8}a^{8}-\frac{1}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}$, $\frac{1}{16}a^{9}-\frac{1}{16}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{304}a^{10}-\frac{9}{304}a^{9}-\frac{1}{304}a^{8}-\frac{37}{304}a^{7}+\frac{3}{38}a^{6}-\frac{7}{152}a^{5}+\frac{3}{19}a^{4}+\frac{1}{76}a^{3}-\frac{1}{38}a^{2}+\frac{1}{38}a+\frac{2}{19}$, $\frac{1}{1216}a^{11}-\frac{1}{608}a^{10}-\frac{7}{1216}a^{9}-\frac{11}{304}a^{8}-\frac{1}{19}a^{7}+\frac{5}{152}a^{6}-\frac{11}{152}a^{5}-\frac{3}{19}a^{4}+\frac{3}{38}a^{3}-\frac{3}{76}a^{2}+\frac{15}{76}a+\frac{7}{38}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{7}{64}a^{11}-\frac{225}{608}a^{10}+\frac{1333}{1216}a^{9}-\frac{429}{304}a^{8}-\frac{137}{152}a^{7}+\frac{607}{152}a^{6}-\frac{913}{152}a^{5}-\frac{5}{19}a^{4}+\frac{281}{38}a^{3}-\frac{953}{76}a^{2}+\frac{687}{76}a-\frac{13}{38}$, $\frac{49}{1216}a^{11}-\frac{135}{608}a^{10}+\frac{825}{1216}a^{9}-\frac{191}{152}a^{8}+\frac{71}{152}a^{7}+\frac{413}{152}a^{6}-\frac{789}{152}a^{5}+\frac{169}{76}a^{4}+\frac{96}{19}a^{3}-\frac{669}{76}a^{2}+\frac{535}{76}a-\frac{7}{2}$, $\frac{17}{608}a^{11}-\frac{9}{152}a^{10}+\frac{89}{608}a^{9}+\frac{7}{304}a^{8}-\frac{111}{152}a^{7}+\frac{101}{152}a^{6}+\frac{4}{19}a^{5}-\frac{173}{76}a^{4}+\frac{35}{38}a^{3}+\frac{13}{19}a^{2}-\frac{31}{38}a+\frac{22}{19}$, $\frac{33}{608}a^{11}-\frac{63}{304}a^{10}+\frac{385}{608}a^{9}-\frac{139}{152}a^{8}-\frac{15}{76}a^{7}+\frac{369}{152}a^{6}-\frac{315}{76}a^{5}+\frac{13}{38}a^{4}+\frac{183}{38}a^{3}-\frac{158}{19}a^{2}+\frac{161}{38}a-2$, $\frac{29}{304}a^{11}-\frac{45}{152}a^{10}+\frac{275}{304}a^{9}-\frac{83}{76}a^{8}-\frac{127}{152}a^{7}+\frac{231}{76}a^{6}-\frac{393}{76}a^{5}+\frac{5}{38}a^{4}+\frac{237}{38}a^{3}-\frac{242}{19}a^{2}+\frac{134}{19}a-5$, $\frac{47}{304}a^{11}-\frac{143}{304}a^{10}+\frac{473}{304}a^{9}-\frac{575}{304}a^{8}-\frac{47}{76}a^{7}+\frac{675}{152}a^{6}-\frac{701}{76}a^{5}+\frac{11}{19}a^{4}+\frac{113}{19}a^{3}-\frac{411}{19}a^{2}+\frac{196}{19}a-\frac{181}{19}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 52217.0172233 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 52217.0172233 \cdot 4}{2\cdot\sqrt{1123021498208518144}}\cr\approx \mathstrut & 3.86017820075 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.140377687276064768.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |